Planetary Fields & Dynamos

Sabine Stanley Johns Hopkins University

Heliophysics Summer School June 21, 2021

Image Credit: R. Vilim

REVIEW: PLANETARY DYNAMOS 101

WARM UP QUESTIONS

(1) What are some differences between planetary magnetic fields and stellar magnetic fields?

(2) NAME THAT PLANET!

-120000 -96000 -72000 -48000 -24000 0 24000 48000 72000

Planet Surface B_r

Planet Surface B_r

& DON'T FORGET GANYMEDE!

& CRUSTAL MAGNETIC FIELDS

Mercury

-150°

Johnson et¹⁸al (2015)

-120°

WANT TO MAKE YOUR OWN FIGURES?

Ankit Barik created

Using a spherical harmonic representation of the field:

$$V(r,\theta,\phi) = a \sum_{l=1}^{\infty} \left(\frac{a}{r}\right)^{l+1} \sum_{m=0}^{l} \left[g_l^m(r)\cos(m\phi) + h_l^m(r)\sin(m\phi)\right] P_l^m(\cos\theta)$$

Calculate the magnetic power spectrum:

$$p(l,m,r) = (l+1) \left(\frac{a}{r}\right)^{(2l+4)} \left[\left(g_l^m\right)^2 + \left(h_l^m\right)^2 \right]$$

Pick a radius r, sum over all m's or sum over all l's, make graphs....

LENGTHSCALES & RESOLUTION

Quite a variety in distribution of length scales Also a variety in resolution

RESOLUTION EXAMPLE

(Please send another mission, much appreciated, thank you)

DYNAMO SURFACE

Planet Surface B_r

Q: Which one changes the most?

Dynamo Surface B_r

Warnings : assumes insulator between surface & dynamo surface : assumes knowledge of depth to dynamo surface

LENGTHSCALES

Dynamo Surface Magnetic Power Spectra

Still quite a variety in distribution of length scales at dynamo surface

MORPHOLOGY CLASSIFICATION ATTEMPT

MORPHOLOGY CLASSIFICATION ATTEMPT

MAGNETICALLY INTERESTING TIMES

Dynamo Surface Br

We now know Jupiter's & Saturn's dynamo fields to similar spatial resolution as Earth's field

The fields are fundamentally different!

MAGNETICALLY INTERESTING TIMES

Scary claim: Differences NOT due to different parameter regimes.

Why is that scary?

It means can't use scaling laws to predict field features.

But it's also good news...

Homogeneous small-scale structure Hemispheric small-scale structure: Southern hemisphere is dipolar (Moore et al. 2018) Zonal shearing?

Zonal small-scale structure (Cao et al. 2020)

135000

180000

COMPLEXITIES TELL US ABOUT INTERIORS

TEST COMPLEXITIES WITH SIMULATIONS

Kuang & Bloxham (1997)

GEODYNAMO

http://www.epm.geophys.ethz.ch/~cfinlay/gufm1.html

To a planetary scientist, this range & detail of information are exquisite

Constable & Constable (2004)

PLANETARY QUESTIONS WE CAN STUDY

• Would love to have fancy frequency spectrum plot for other planets, but not feasible in the near future. So in the meantime...

- Timing? Reversals? Secular Variation?
- Focus on big questions:

DYNAMO TIMING

SECULAR VARIATION

A COUPLE OF CASE STUDIES

Mercury's Magnetic Field

Mercury Surface

- Weak field strength
- Very axisymmetric
- Dipolar with a significant northward offset

Can a dynamo reproduce all 3 observations?

Image credit: Ankit Barik

PRE-MESSENGER CONTESTANTS

Gomez-Perez & Solomon (2010), Gomez-Perez & Wicht (2010), Heyner et al. (2011)

Magnetopause

Christensen (2006), Christensen & Wicht (2008) Manglik et al. (2010)

The (real) scientific method.

Adaptation of https://www.mrlovenstein.com/comic/769

MESSENGER ALSO FOUND CRUSTAL FIELDS

Dynamo was active ~3.7-3.9 Ga!

POSSIBLE CONTESTANT 1

(field is too strong in model)

POSSIBLE CONTESTANT 2

POSSIBLE CONTESTANT 3

FUTURE PROSPECTS

New Data: BepiColombo

Copyright: ESA

Mercury flybys:

October 1, 2021 June 23, 2022 June 20, 2023 September 5, 2024 December 2, 2024 January 9, 2025

Arriving in Mercury orbit :

December 5, 2025

FUTURE PROSPECTS

Keep analyzing MESSENGER data!

Biggest challenge: External fields

Can we model the external fields well-enough to resolve more of the dynamo field?

Venus Magnetic Field

Saturn's Magnetic Field

Saturn Surface

- Field strength similar to Earth's
- dipole tilt < 0.0095 degrees
- Very little secular variation
- Weird magnetic power spectrum

Image credit: Ankit Barik

Saturn's Magnetic Power Spectrum

SO MUCH DETAIL! SOME IMPORTANT FEATURES:

Cao et al. (2019)

• Excess power in odd modes

Saturn's Magnetic Power Spectrum

Cao et al. (2019)

Flattening of spectral slope at higher degrees

Saturn's Magnetic Power Spectrum

Suggests different dynamo surface depths

SIGNS OF THE MODES

SATURN-LIKE DYNAMO MODEL

What **special** ingredients do we need in a dynamo simulation to create a Saturn-like magnetic field?

What **special** ingredients exist in Saturn?

SATURN'S INTERIOR

Metallic hydrogen

SPECIAL INGREDIENT !: STABLE LAYER

Yan & Stanley (2021)

SPECIAL INGREDIENT 2: VARIABLE HEAT FLUX

Outer boundary: heat flux depends on latitude

2) Sethanoispstoeatic Cronvection

BEST MODEL SO FAR

Model with stable HIL & fancier VHF

Yan & Stanley (2021)

AXISYMMETRIZATION IN ACTION

Yan & Stanley (2021)

- Planetary magnetic fields have their own peculiarities
- Have to be careful with "simple" scaling laws
- Can use these peculiarities to learn about interior structure & dynamics →
- Magnetic fields are a powerful tool to observe a planet's interior