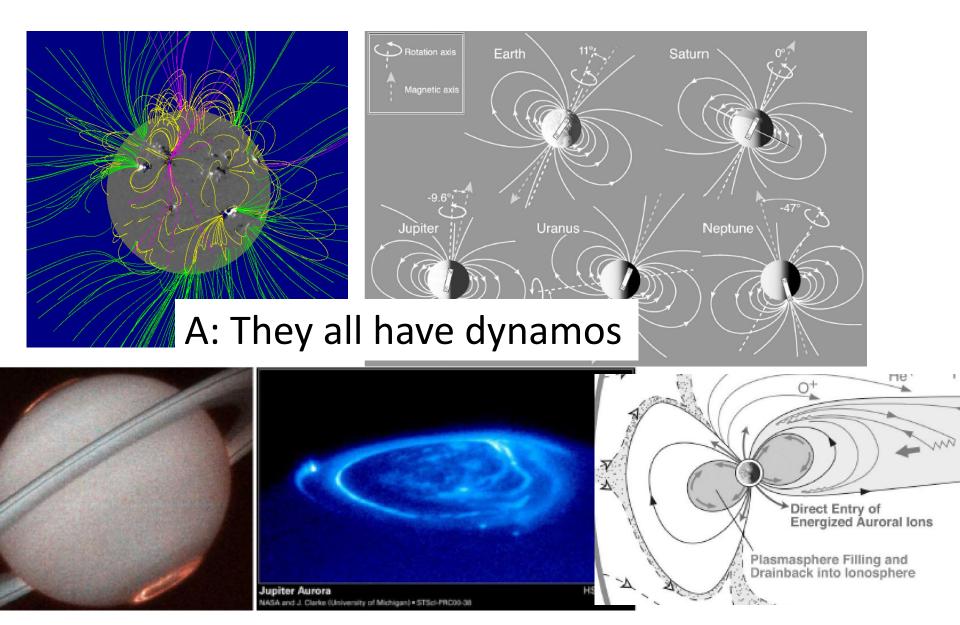
Q: Why do the Sun and planets have magnetic fields?

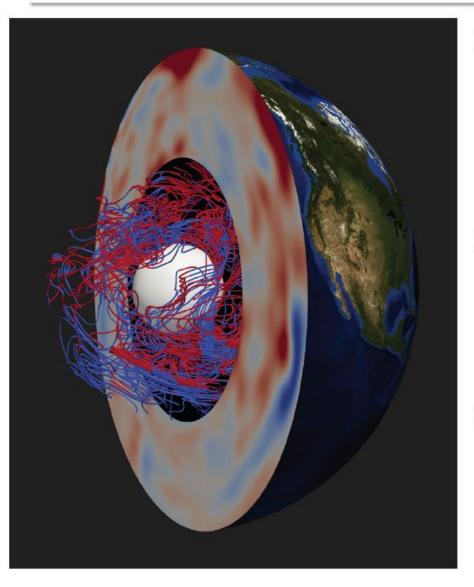
Dana Longcope Montana State University

w/liberal "borrowing" from Bagenal, Stanley, Christensen, Schrijver, Charbonneau, ...

Q: Why do the Sun and planets have magnetic fields?



Dynamo Ingredients



(1) electrically conducting fluid

- •Plasma (stars)
- •Liquid iron (terrestrial planets)
- •Metallic hydrogen (gas giants)
- Ionized water (ice giants)

(2) fluid must have complex motions

Complex turbulent flows
Rotation: breaks mirror-symmetry not required, but needed for largescale, organized fields

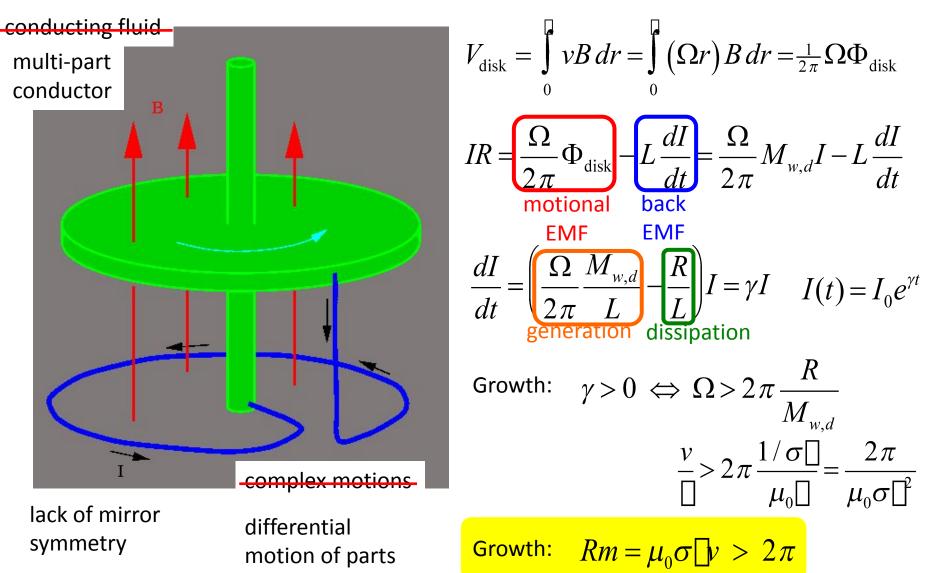
(3) motions must be vigorous enough

•Figure of merit: Magnetic Reynold's #

Rm = velocity × size × conductivity

From Stanley 2013

A Toy w/ all ingredients

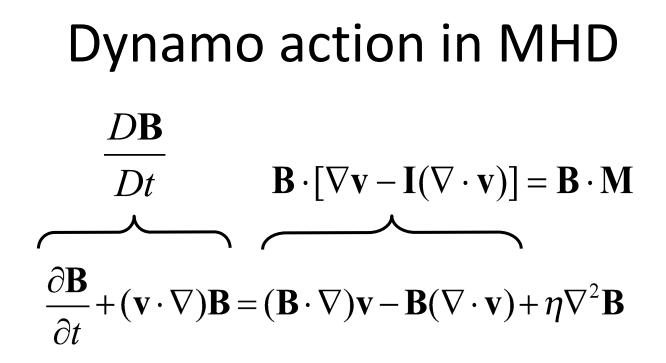


Reality: Conducting fluid – MHD

Fluid dynamics $\begin{cases} \frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \mathbf{v}) \\ \rho \frac{\partial \mathbf{v}}{\partial t} = -\nabla \cdot (\rho \mathbf{v}) \\ \rho \frac{\partial \mathbf{v}}{\partial t} + \rho (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + \rho \mathbf{g} + \nabla \cdot \vec{\sigma} \\ \rho c_v \left(\frac{\partial T}{\partial t} + \mathbf{v} \cdot \nabla T \right) = -\frac{2}{3}T \nabla \cdot \mathbf{v} + \nabla \mathbf{v} : \vec{\sigma} + \dot{Q} \end{cases}$ Traditional (neutral) fluid – solve first

Faraday's + Ohm's laws $\frac{\partial \mathbf{B}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{B} = (\mathbf{B} \cdot \nabla) \mathbf{v} - \mathbf{B} (\nabla \cdot \mathbf{v}) + \eta \nabla^2 \mathbf{B}$

Linear equation for B(x,t) – solve w/ known v(x,t)



If **M** has a positive eigenvalue $\lambda > 0$ **B** can grow exponentially: **DYNAMO ACTION**

 $-\frac{\eta}{\eta}=\frac{v}{v}$

- **B** \square -**B** : same e-vector \square same λ
- Reverse velocity AND reflect in mirror $\Box \ \lambda \ \Box \ \lambda$
- Do one and not the other \Box λ \Box - λ

Growth:
$$Rm = \frac{\Box v}{\eta} = \mu_0 \Box v \sigma > 1$$

Q: What kind of flow has $\lambda > 0$?

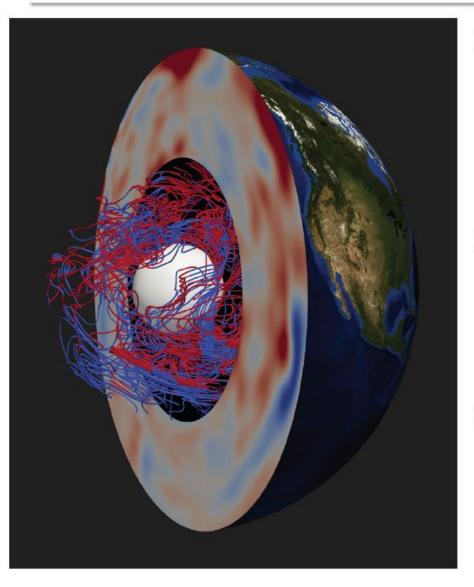
- Turbulent flows have pos. Lyapunov exponent: $\lambda > 0$
 - tend to stretch balls into strands
 - tend to amplify fields
- Conditions for turbulence:
 - driving: e.g. Rayleigh-Taylor instability
 - viscosity fights driving must be small
- - must be significant w.r.t. fluid motion

Re=		>>1
	υ	

$$\operatorname{R} o = \frac{v}{\Gamma \Omega} << 1$$

	η [m²/s]	υ [m²/s]	L [m]	v [m/s]	Ω [rad/s]	Rm	Re	Ro
Sun (CZ)	1	10 ⁻²	10 ⁸	1	10 ⁻⁶	10 ⁸	10 ¹⁰	10 ⁻²
Earth (core)	1	10 ⁻⁵	10 ⁶	10 ⁻⁴	10 ⁻⁴	10 ²	10 ⁷	10 ⁻⁶

Dynamo Ingredients



(1) electrically conducting fluid

- •Plasma (stars)
- •Liquid iron (terrestrial planets)
- •Metallic hydrogen (gas giants)
- Ionized water (ice giants)

(2) fluid must have complex motions

Complex turbulent flows
Rotation: breaks mirror-symmetry not required, but needed for largescale, organized fields

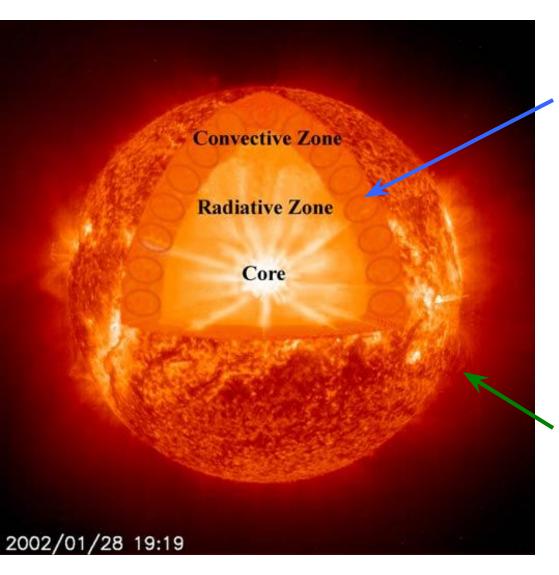
(3) motions must be vigorous enough

•Figure of merit: Magnetic Reynold's #

Rm = velocity × size × conductivity

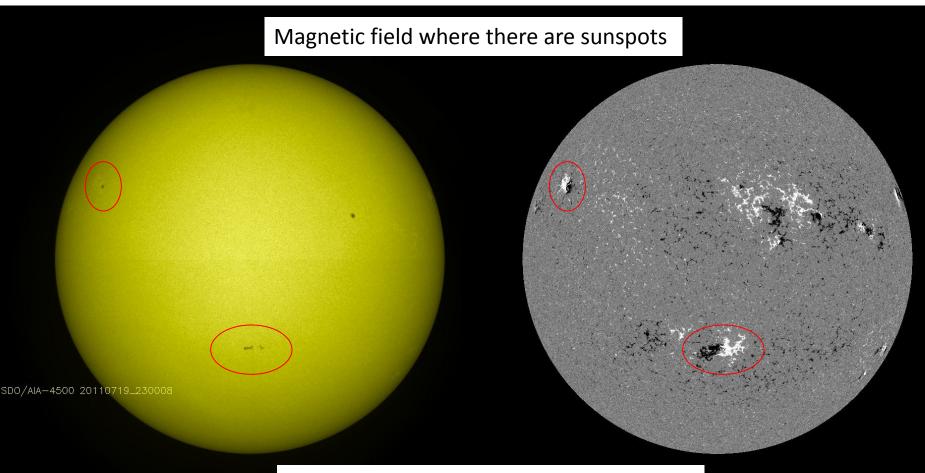
From Stanley 2013

How it works in the Sun



- Entire Star: H/He plasma
- Convection Zone (CZ)
 - Outer 200,000 km
 - Turbulence: Re = 10^{10}
 - Thermally driven
 - Good conductor
 Rm = 10⁸
 - Rotation effective Ro = 10⁻²
- Corona conductive but tenuous:
 - J smaller (~0?)

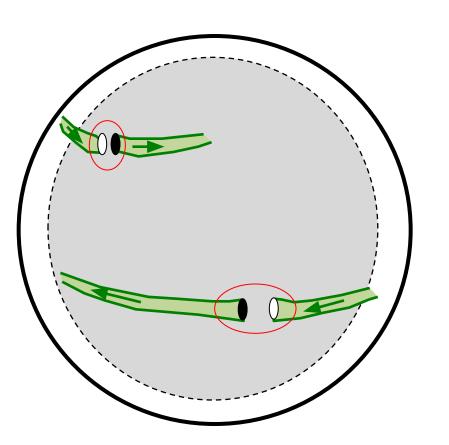
Evidence of the dynamo

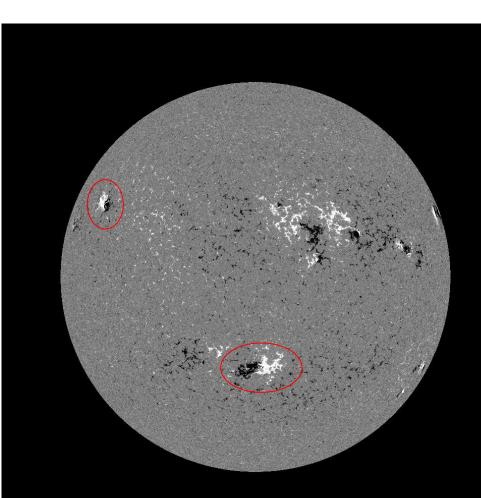


Field outside sunspots and elsewhere too

Evidence of the dynamo

Field is **fibril**

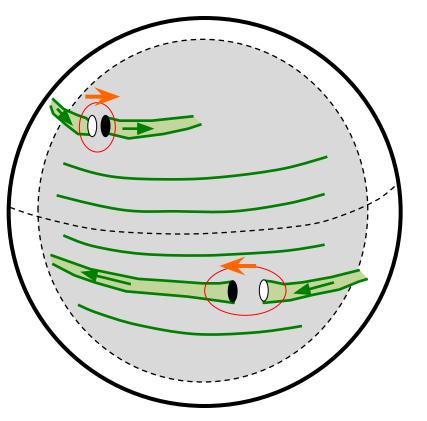


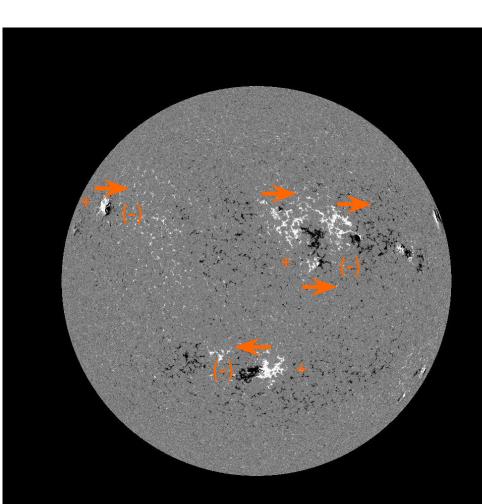


SDO/HMI 2011-07-19T22:03:41.500

Evidence of the dynamo

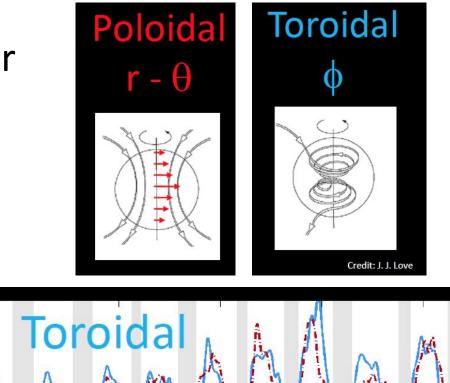
Field orientation: mostly toroidal (E-W)

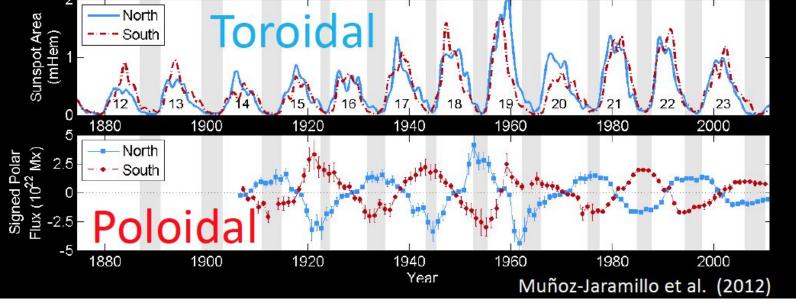




SDO/HMI 2011-07-19T22:03:41.500

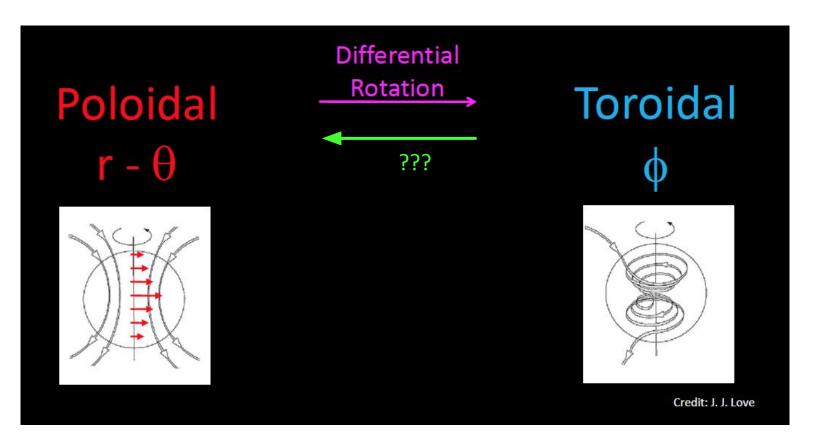
An oscillator at work:



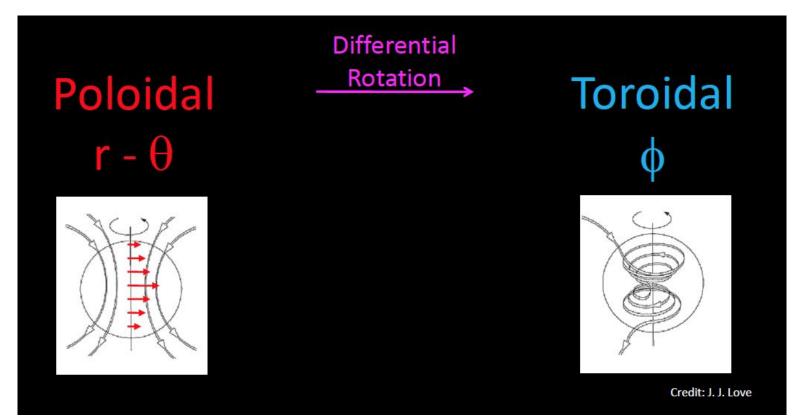


NB: B_{pol} & B_{tor} out of phase like Q & I in LC circuit (oscillator)

Solar dynamo as an oscillator



Half of the oscillation...



Activity 44: Estimate the time it takes for the solar equator to execute one more full rotation than the poles in the same time.

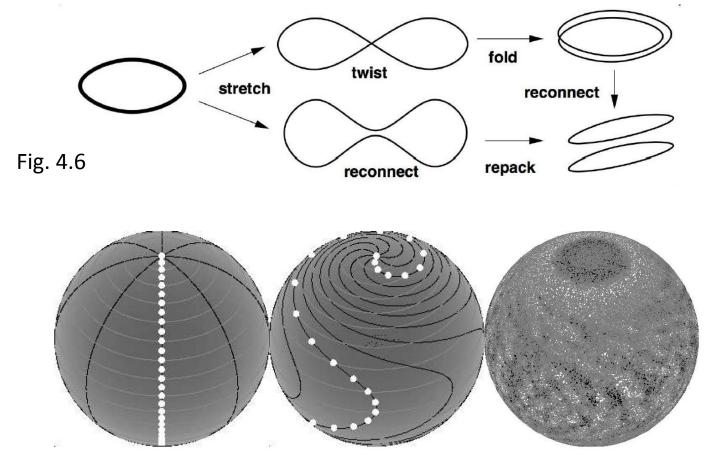
P = 25 d @ equator: $f = 1/25 = 0.040 d^{-1}$ P = 35 d @ poles: $f = 1/35 = 0.029 d^{-1}$

```
\Delta f = 0.011 d^{-1} \square 1/\Delta f = 87 d
```

```
Check:
```

```
N_{eq} = 87/25 = 3.5 rotations of equator
N_{pole} = 87/35 = 2.5 rotations of equator
```

Activity 47: If we take the Sun's polar field – averaging at cycle minimum at about 5 Gauss – how long would it take to wind that field into a strength of some 10⁵ G? Hint: remember the field line stretch-and-fold from Fig. 4.6, look at the illustration in Fig. 4.9, and consider 'compound interest'. [i.e. exponentials]



Activity 47: p. 86: If we take the Sun's polar field – averaging at cycle minimum at about 5 Gauss – how long would it take to wind that field into a strength of some 10^5 G? Hint: remember the field line stretch-and-fold from Fig. 4.6, look at the illustration in Fig. 4.9, and consider 'compound interest'. [i.e. exponententials]

1 stretch+fold requires **87 days**

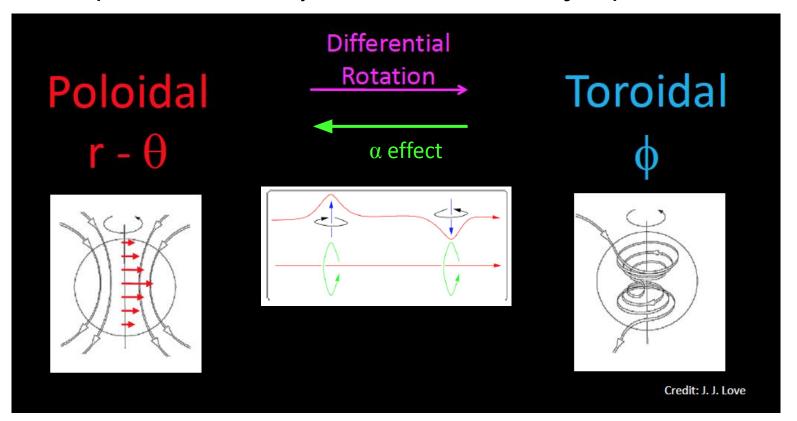
(one rotation of pole w.r.t. equator) `compound interest': Field strength **doubles** every 87 days

$$\Box$$
 e-folding time = 87/ln(2) = 125 days

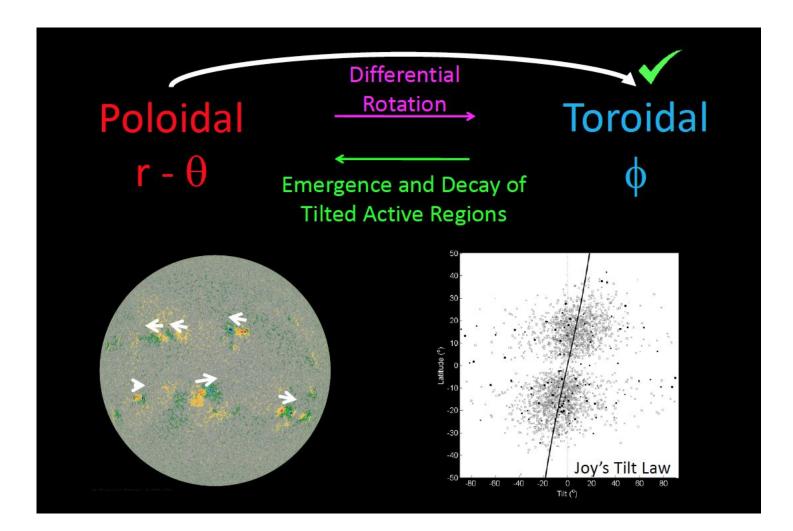
 $B = 5 G \times exp(t/125) = 10^5 G$

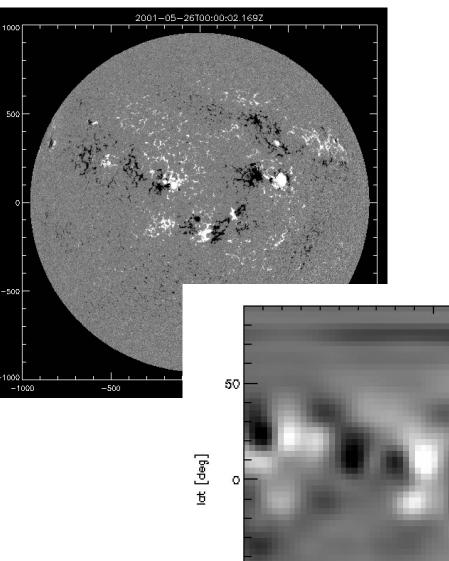
t = 125 d × ln(
$$10^{5}/5$$
) = 1,240 days = 3.4 years

The other half ... mean field theory (see lecture by Prof. Bhattacharjee)



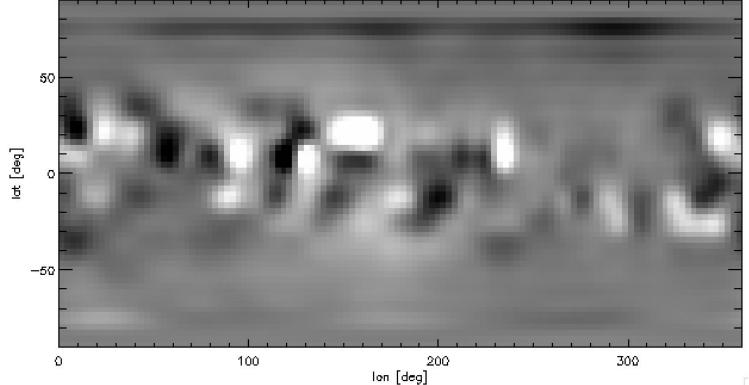
The other half... Babcock-Leighton model



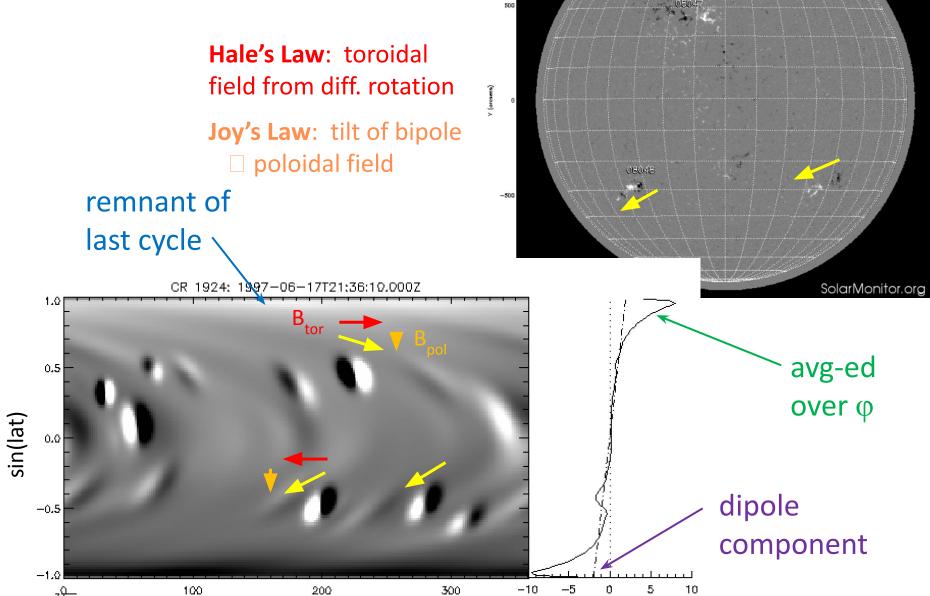


Synoptic plot: unwrapped view built up over time

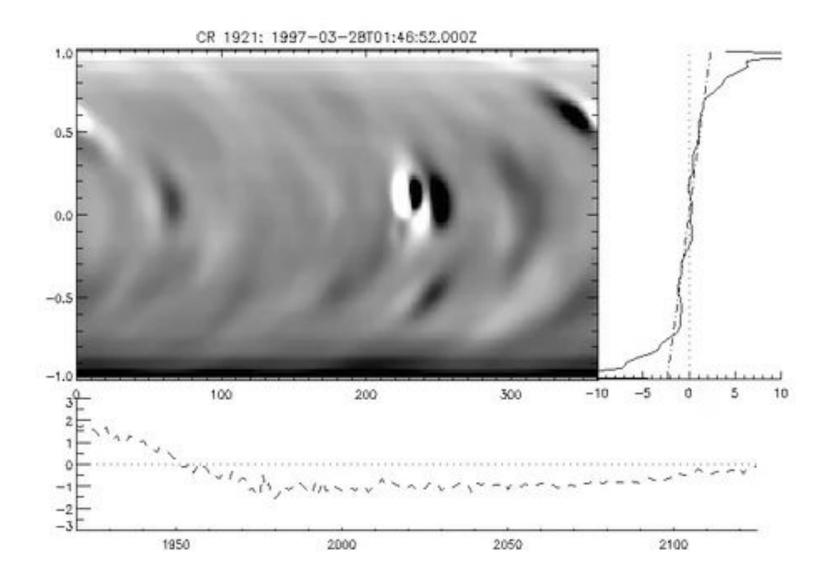
Sun @ 2001-05-19T20:26:15.000Z

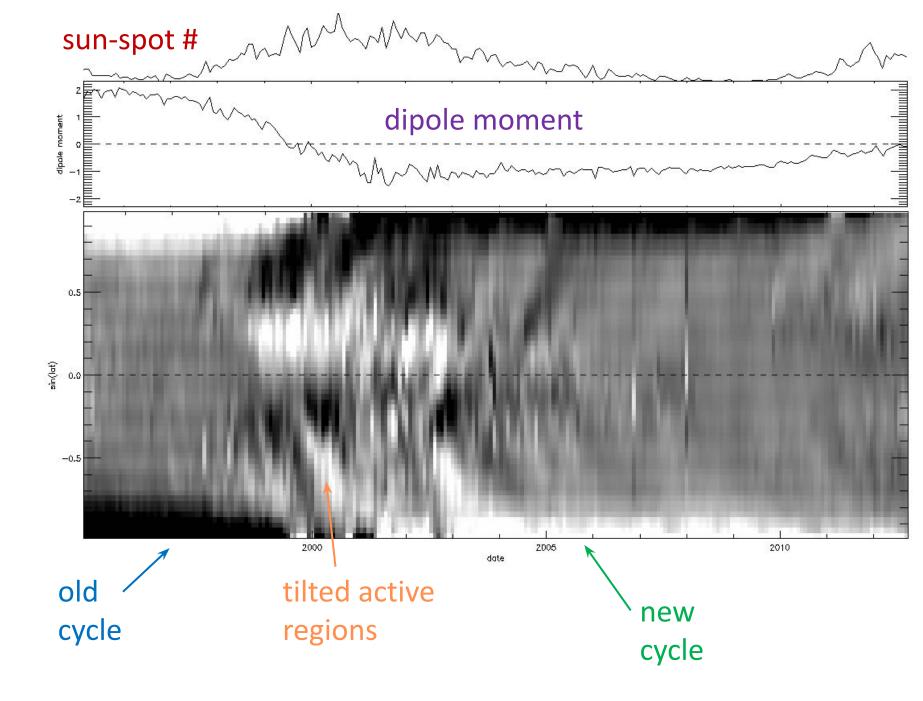


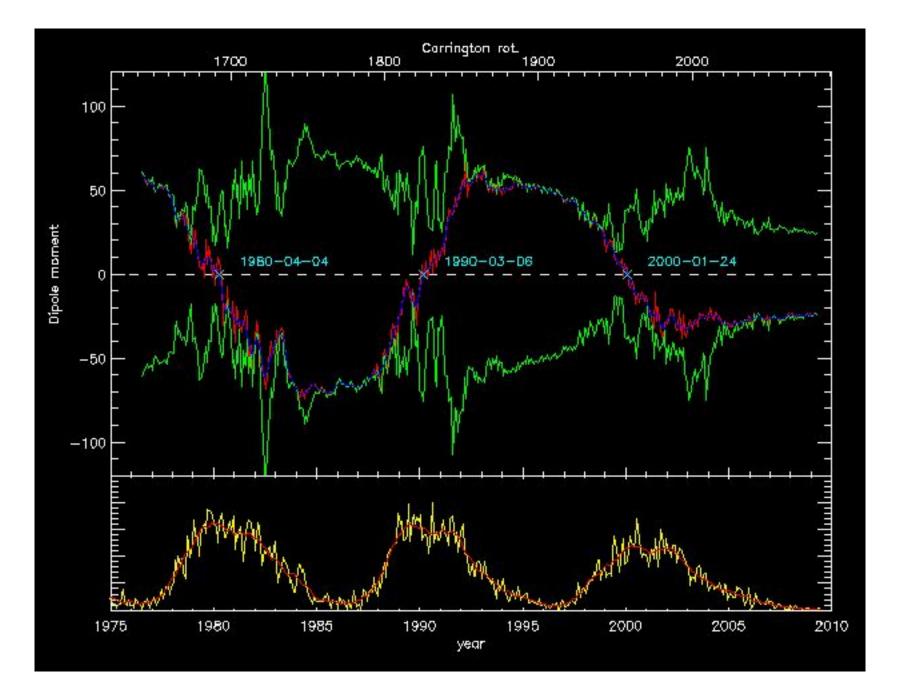
Tilted active regions contribute to magnetic dipole moment – in sense to reverse it



MDI Magnetogram 1-Jun-1997 12:52:05.640

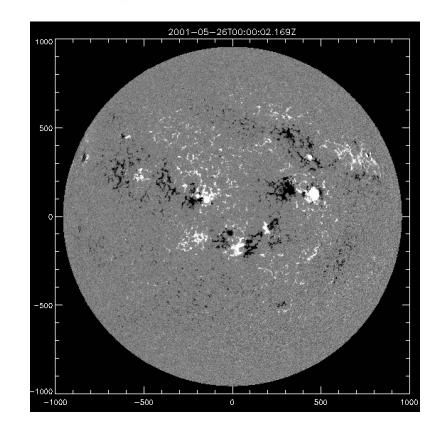






Activity 51: Question: with this value of D [=250 km²/s], what is the characteristic time scale for flux to disperse over the solar surface (hint: Eq. 3.20)? [H]ow important is the meridional advection from equator to pole (with a characteristic velocity of 10 m/s) in transporting the field within the duration of a solar cycle?

$$\tau_{\rm d} \sim \frac{L_{\rm t}^2}{\eta} . \quad (3.20)$$



Activity 51: Question: with this value of D [=250 km²/s], what is the characteristic time scale for flux to disperse over the solar surface (hint: Eq. 3.20)? [H]ow important is the meridional advection from equator to pole (with a characteristic velocity of 10 m/s) in transporting the field within the duration of a solar cycle?

$$\tau_{\rm d} \sim \frac{L_{\rm t}^2}{\eta}$$
. (3.20)

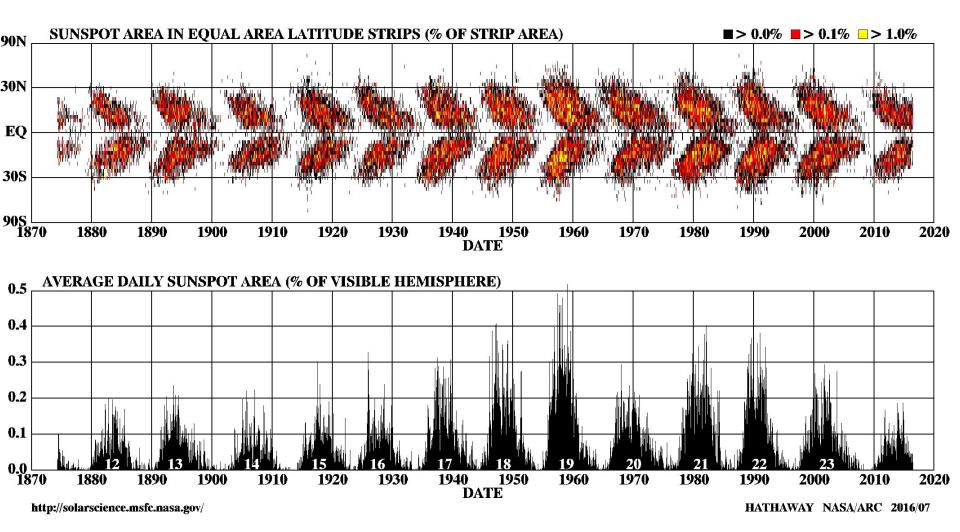
$$L_{t} \sim R_{\odot} = 7 \times 10^{5} \text{ km}$$

$$\tau_{\rm d} \sim L_{\rm t}^2/D = 2 \times 10^9 \, {\rm s} = 65 \, {\rm y}$$

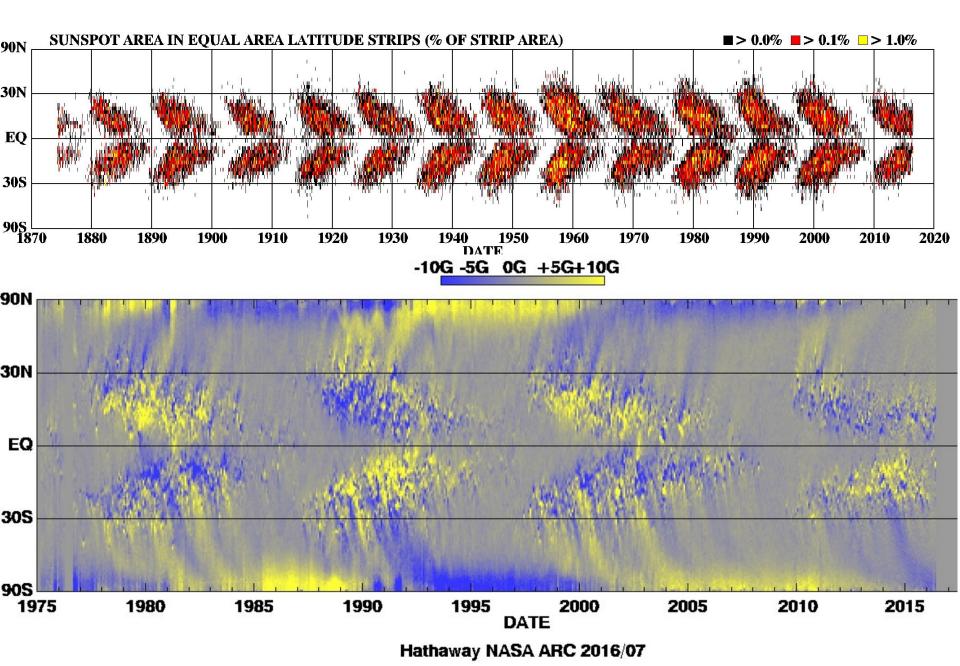
vs.
$$R_{\odot}/v = (7 \times 10^5 \text{ km})/(10^{-2} \text{ km/s})$$

= $7 \times 10^7 \text{ s} = 2.3 \text{ y}$

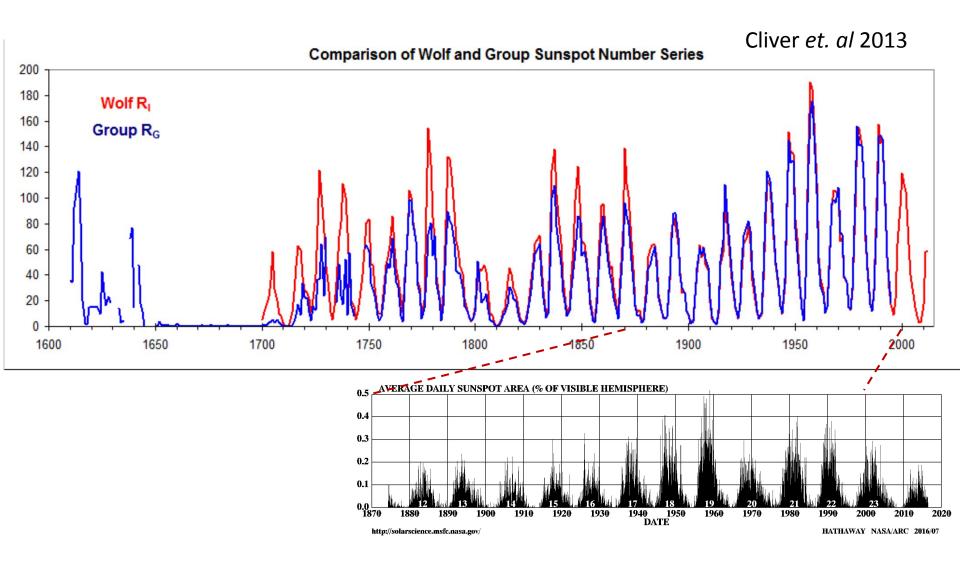
DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS



DAILY SUNSPOT AREA AVERAGED OVER INDIVIDUAL SOLAR ROTATIONS



Long(er)-term variation on the solar dynamo:



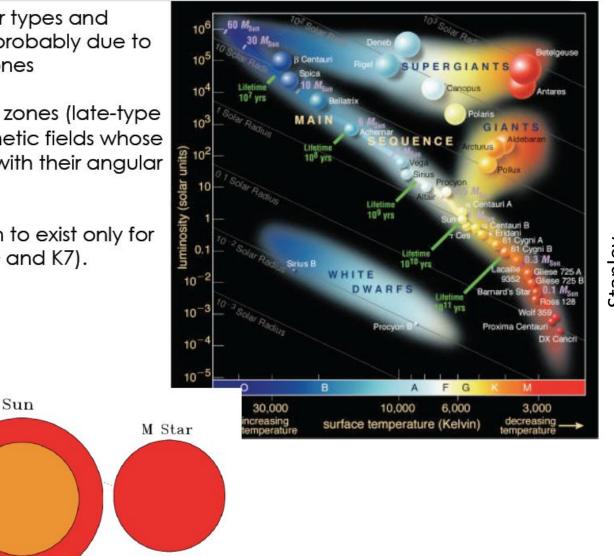
STELLAR MAGNETIC FIELDS

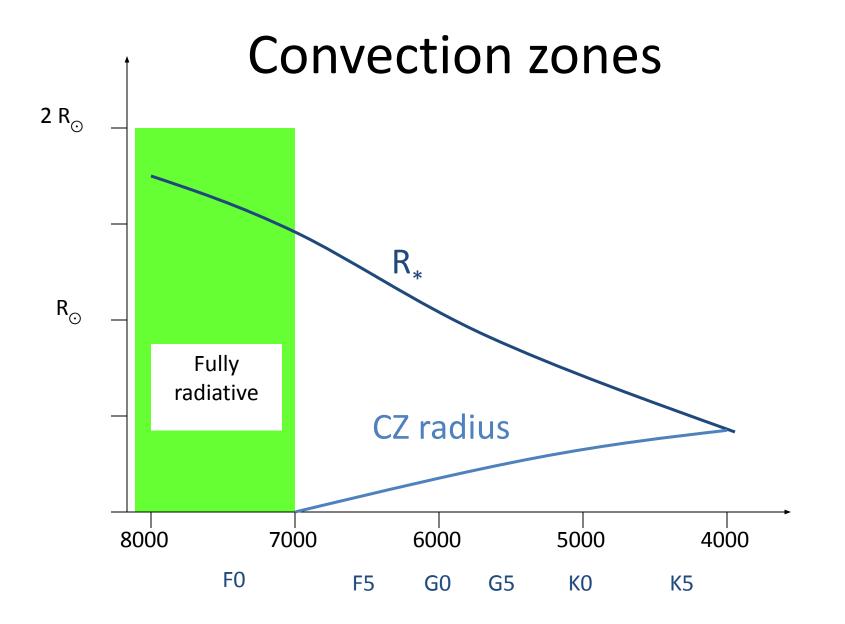
Convective

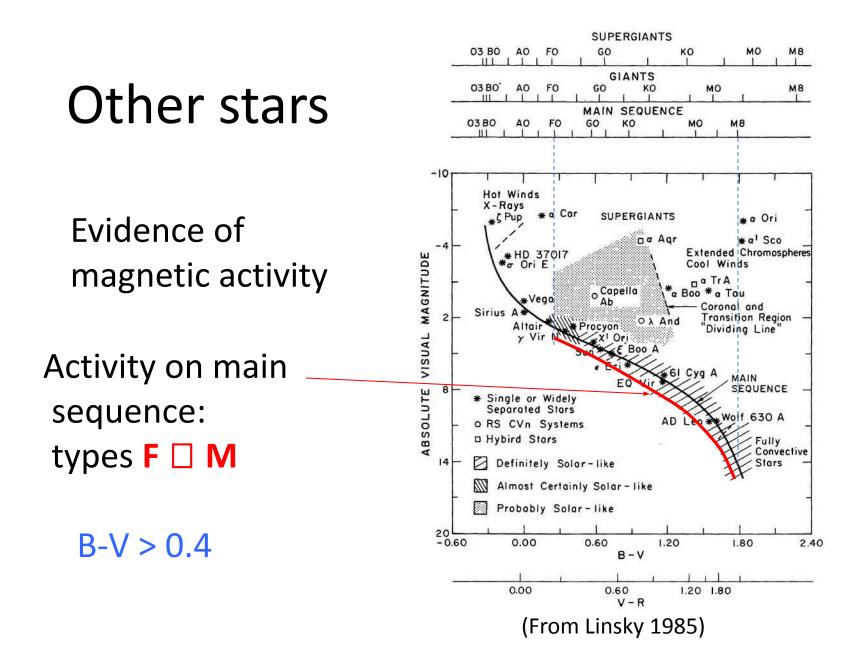
Radiative

- correlations between stellar types and magnetic field properties, probably due to geometry of convection zones
- stars with outer convection zones (late-type stars) have observed magnetic fields whose strength tends to increase with their angular velocity
- Cyclic variations are known to exist only for spectral types between G0 and K7).

B Star



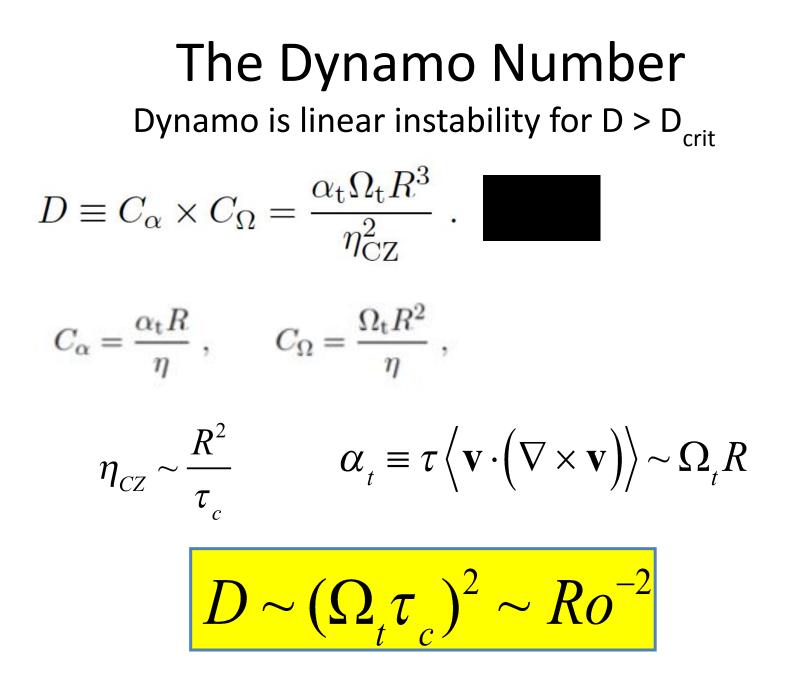




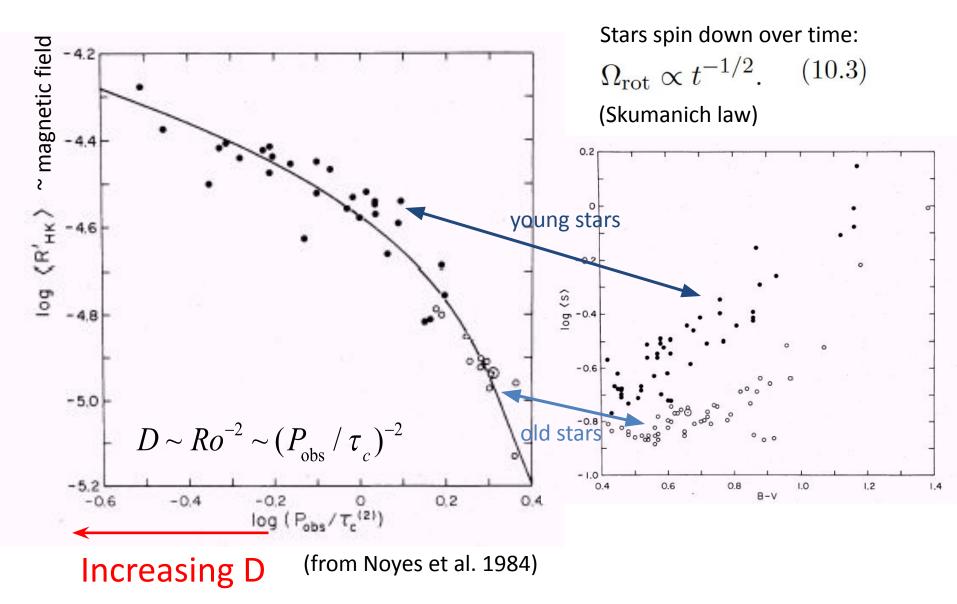
Activity 50: Relate the Rossby number in Eq. (4.2) to the dynamo number C_{Ω} and the magnetic Reynolds number R_m in Eq. (4.20): $N_R = R_m^2 / C_{\Omega}$.

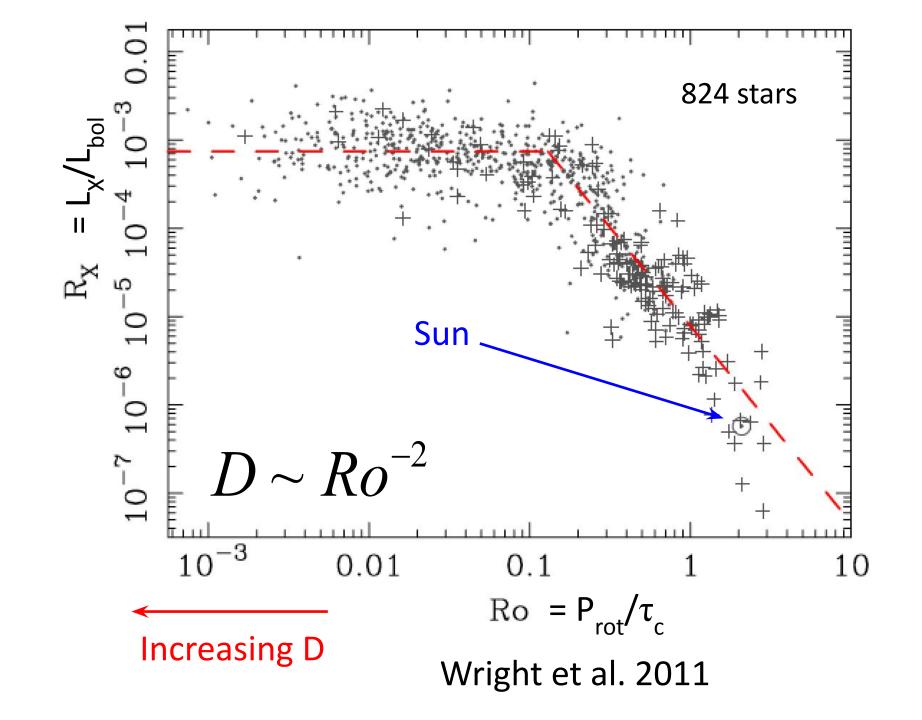
$$N_{\rm R} = \frac{v_{\rm t}}{\Omega L_{\rm t}}, \qquad (4.2)$$

$$C_{\alpha} = \frac{\alpha_{\rm t} R}{\eta} , \qquad C_{\Omega} = \frac{\Omega_{\rm t} R^2}{\eta} , \qquad \mathcal{R}_{\rm m} = \frac{u_{\rm t} R}{\eta} , \qquad (4.20)$$



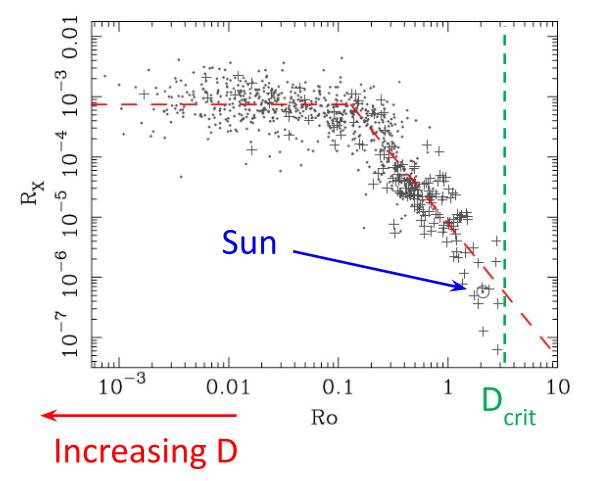
Activity vs. Rossby Number

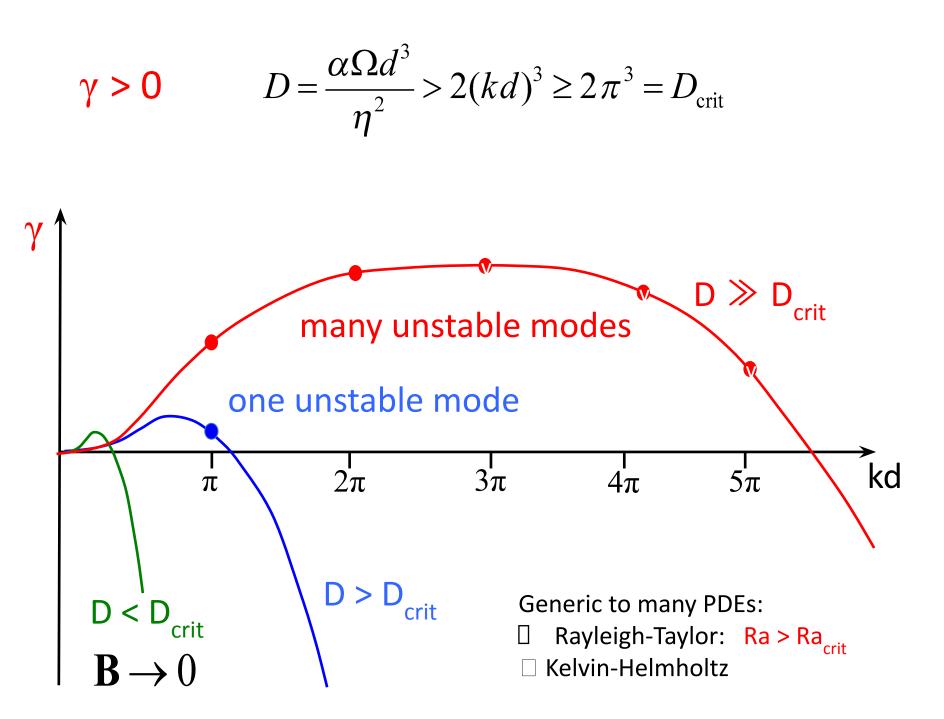


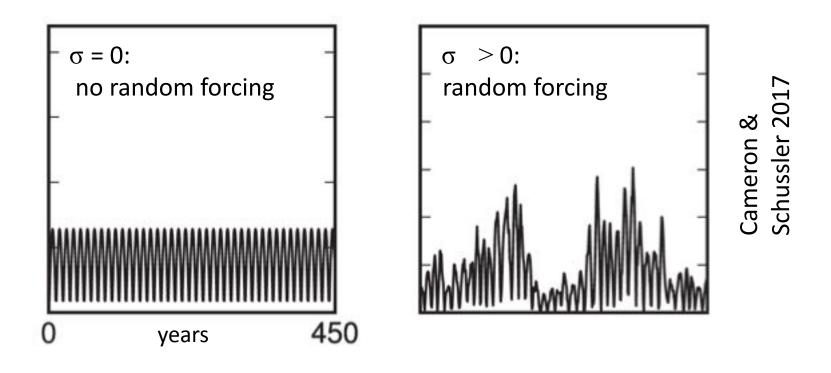


From Cameron & Schussler 2017:

- The solar dynamo is operating near D ≃ D_{crit}
- Only single normal mode is unstable
- Long term variation from fluctuations





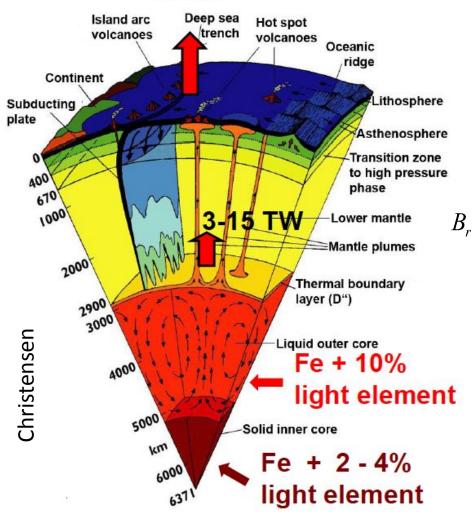


one normal mode:

non-linear saturation $dX = (\beta + i\omega_0 - (\gamma_r + i\gamma_i)|X|^2)Xdt + \sigma XdW_c = 0,$ linear instability random forcing (Wiener process)

How the dynamo works for Earth

44 TW



Non-conducting mantle

$$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} = 0$$

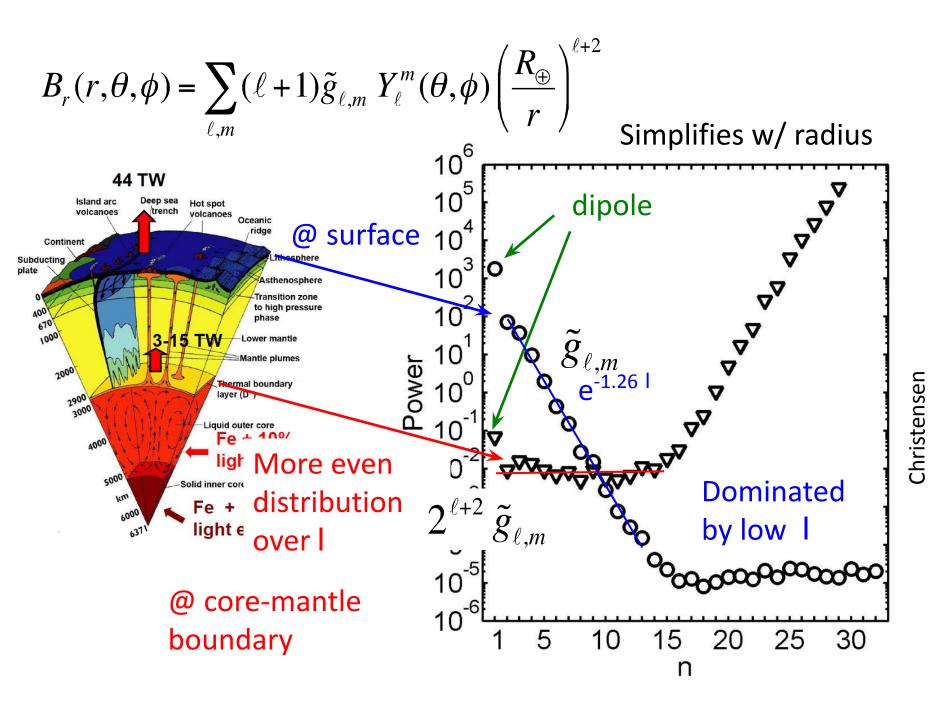
$$\mathbf{B} = -\nabla \chi \qquad \nabla \cdot \mathbf{B} = -\nabla^2 \chi = 0$$

$$\chi(r, \theta, \phi) = \sum_{\square m} \mathbf{F}_{\square}^m (\theta, \phi) \left(\frac{R_{\oplus}}{r}\right)^{\square^{+1}}$$

$$(r, \theta, \phi) = -\frac{\partial \chi}{\partial r} = \sum_{\square m} (\square^{+1}) \mathbf{F}_{\square}^m Y_{\square}^m (\theta, \phi) \left(\frac{R_{\oplus}}{r}\right)^{\square^{+2}}$$

simplifies w/ increasing r
Turbulent conducting fluid:

DYNAMO $\nabla \times \mathbf{B} = \mu_0 \mathbf{J} \neq \mathbf{0}$ **Complex flows – complex field**

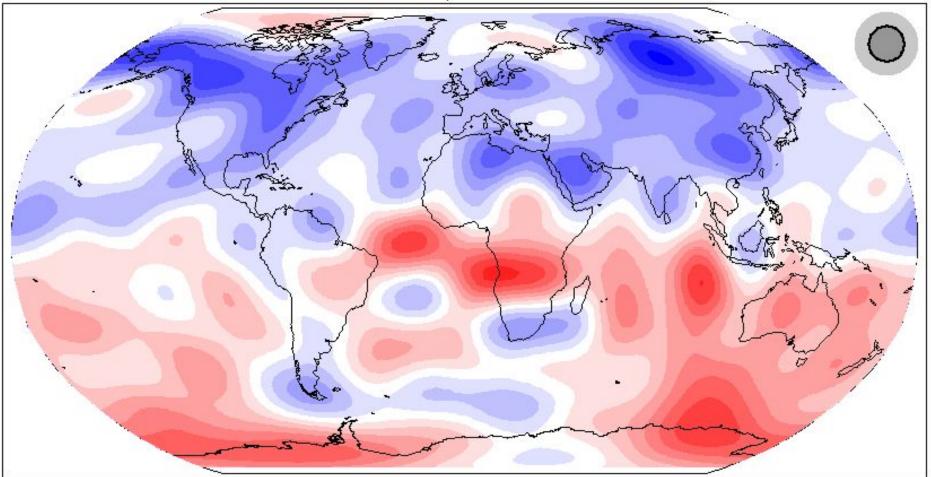


Observation: what B_r looks like today

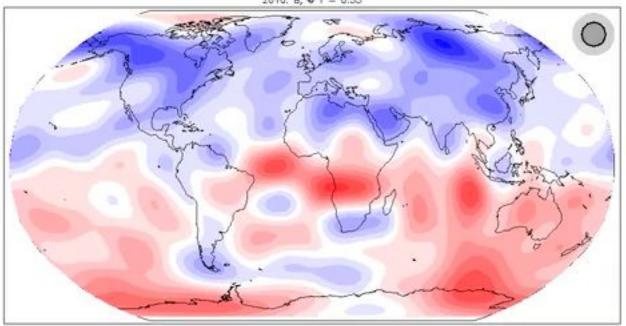
@ core-mantle boundary: lower boundary of potential region

∏<14

2010: B, @ r = 0.55

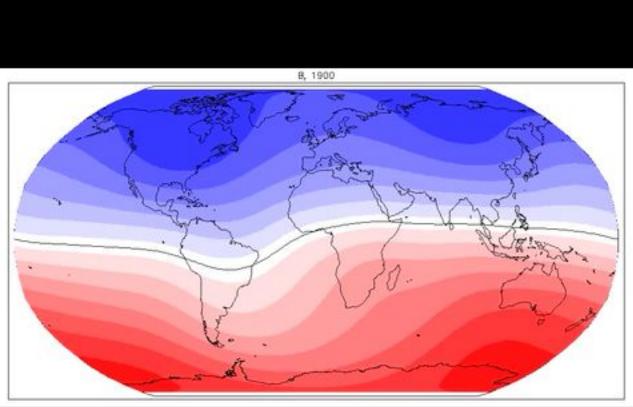


Simplifies w/ increasing r $B_r(r,\theta,\phi) = -\frac{\partial \chi}{\partial r} = \sum_{\square m} (\square+1) \sum_{\square m} Y_\square^m(\theta,\phi) \left(\frac{R_\oplus}{r}\right)^{\square+2}$



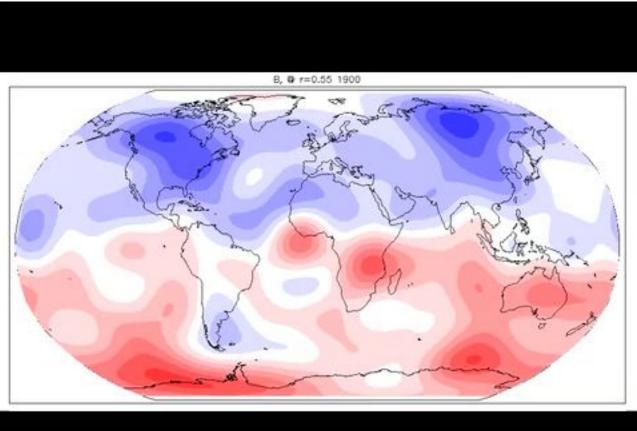
Evolution of field

@ surface for 100 years

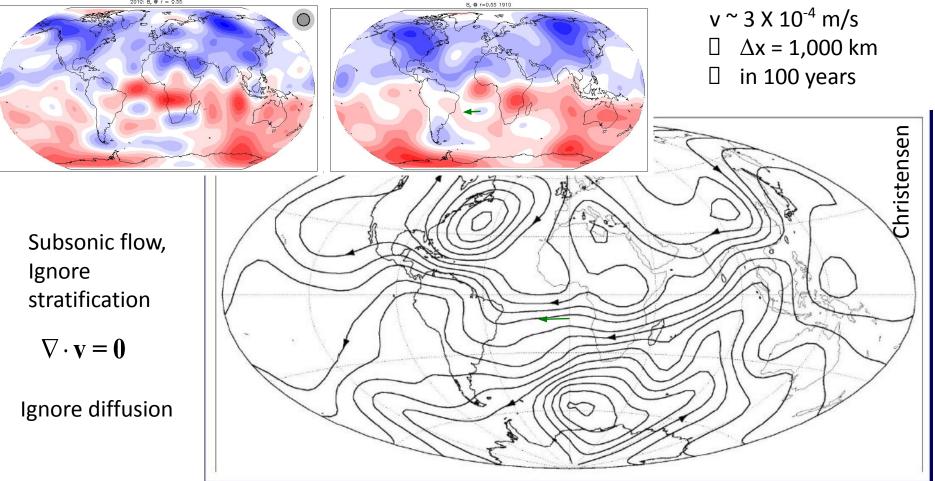


Evolution of field

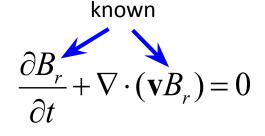
@ core-mantle boundary for 100 years



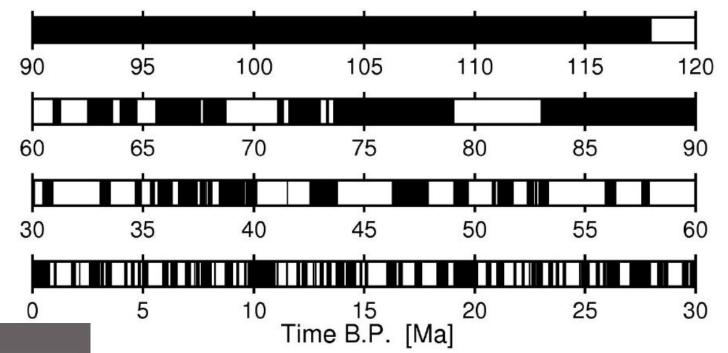
Use evolution to infer fluid velocity



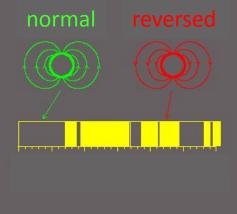
 $\frac{\partial \mathbf{B}}{\partial t} + (\mathbf{v} \cdot \nabla) \mathbf{B} = (\mathbf{B} \cdot \nabla) \mathbf{v} - \mathbf{B} (\nabla \cdot \mathbf{v}) + \eta \nabla^2 \mathbf{B}$



Longer-term evolution

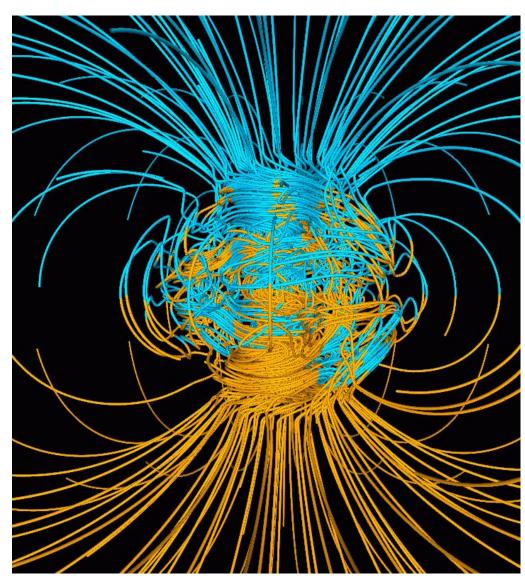


Christensen



Like toy dynamo, Earth works in 2 modes. Flips between them seemingly at random

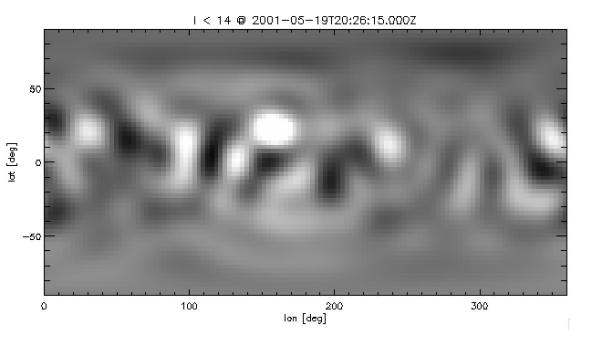
Model geodynamo

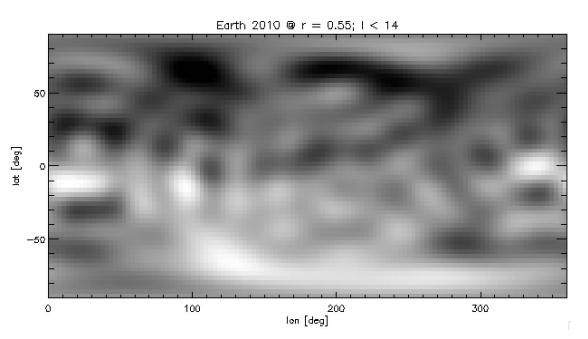


- Glatzmaier & Roberts 1995
- Numerical solution of MHD
- Toroidal structure inside convecting core

Activity 57: Summarize the contrast between the dynamo of a terrestrial planet with that of stars as discussed in this Chapter 4: consider, among others, flow speed, rotation period, stratification, differential rotation, and meridional advection.

	η [m²/s]	υ [m²/s]	L [m]	v [m/s]	Ω [rad/s]	Rm	Re	Ro
Sun (CZ)	1	10 ⁻²	10 ⁸	1	10 ⁻⁶	10 ⁸	10 ¹⁰	10 ⁻²
Earth (core)	1	10 ⁻⁵	10 ⁶	10 ⁻⁴	10 ⁻⁴	10 ²	10 ⁷	10 ⁻⁶





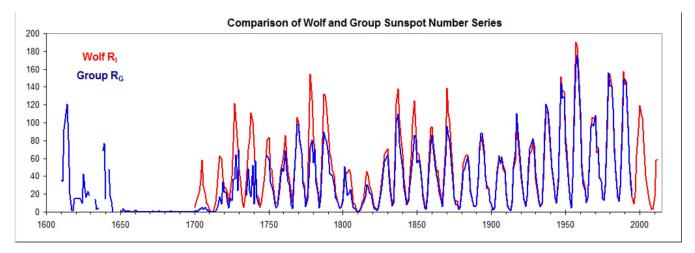
 $Rm = 10^8$ $Ro = 10^{-2}$

Dynamo comparison: Sun vs. Earth

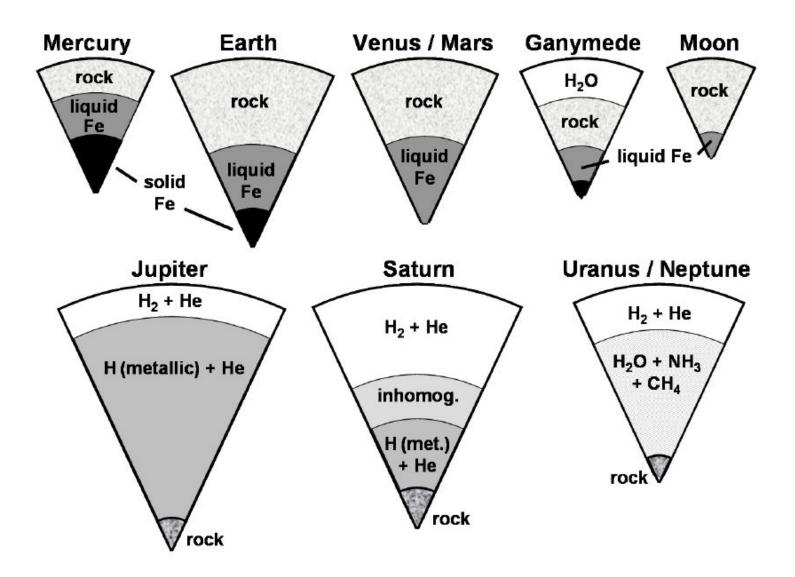
> $Rm = 10^2$ $Ro = 10^{-6}$

 $D \sim Ro^{-2}$

 $Ro = 10^{-2}$



Other planets

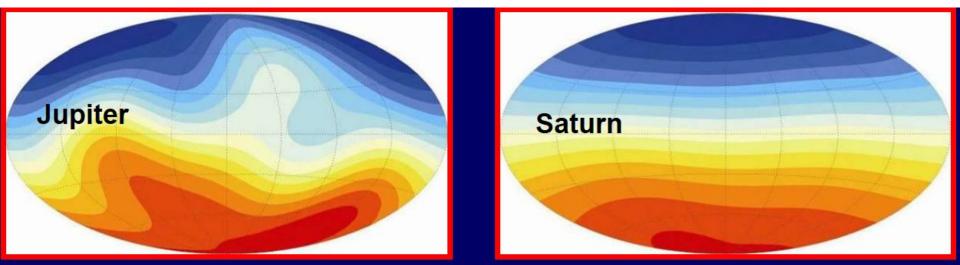


Other planets

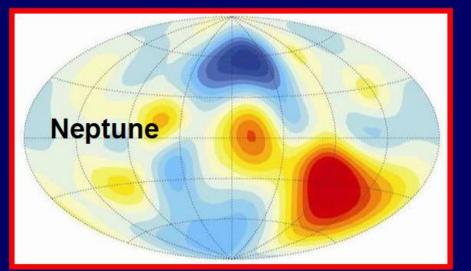
Christensen

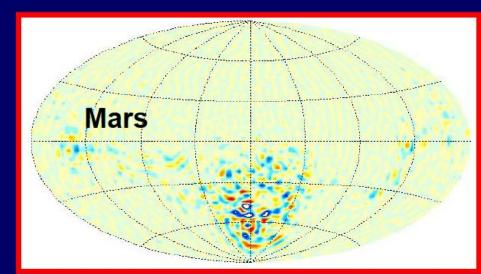
Planet	Dynamo	R_c/R_p	Β _s [μΤ]	Dip. tilt	Quadr Dipole
Mercury	Yes (?)	0.75	0.35	<5°?	0.1-0.5
Venus	No	0.55			
Earth	Yes	0.55	44	10.4°	0.04
Moon	No	0.2 ?			
Mars	No, but in past	0.5			
Jupiter	Yes	0.84	640	9.4°	0.10
Saturn	Yes	0.6	31	0 °	0.02
Uranus	Yes	0.75	48	59 °	1.3
Neptune	Yes	0.75	47	45°	2.7
Ganymede	Yes	0.3 ?	1.0	< 5° ?	?

What that means

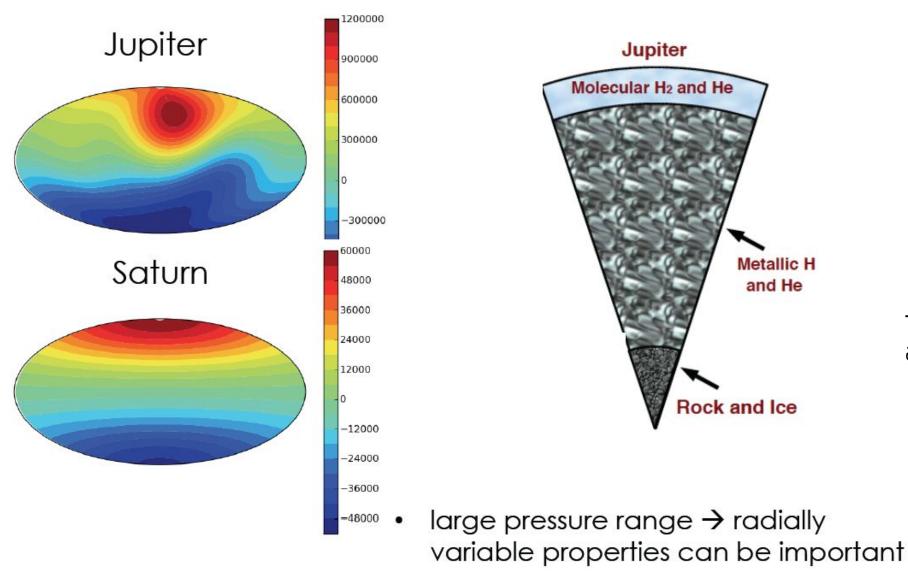


Christensen

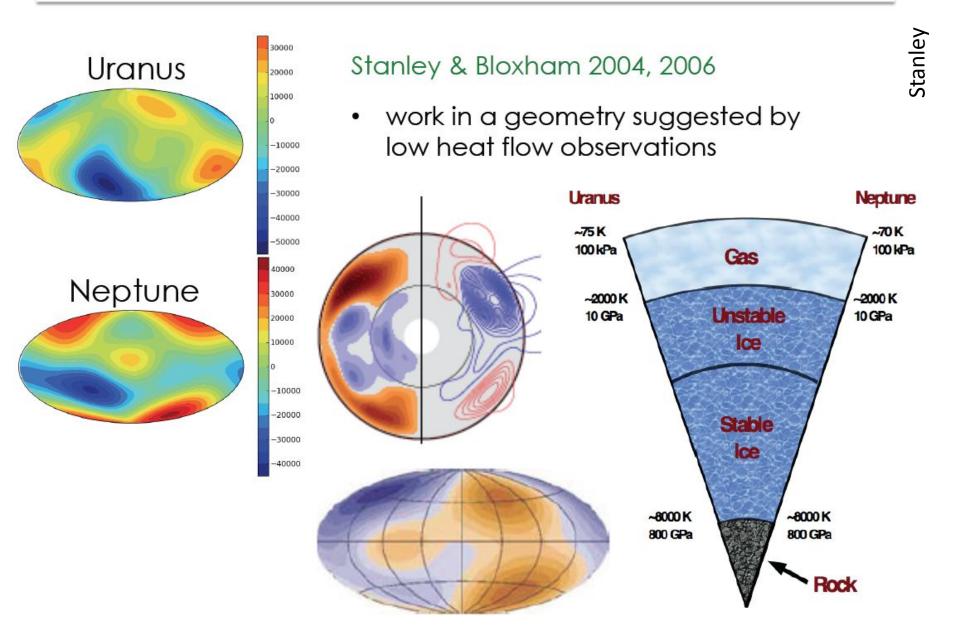




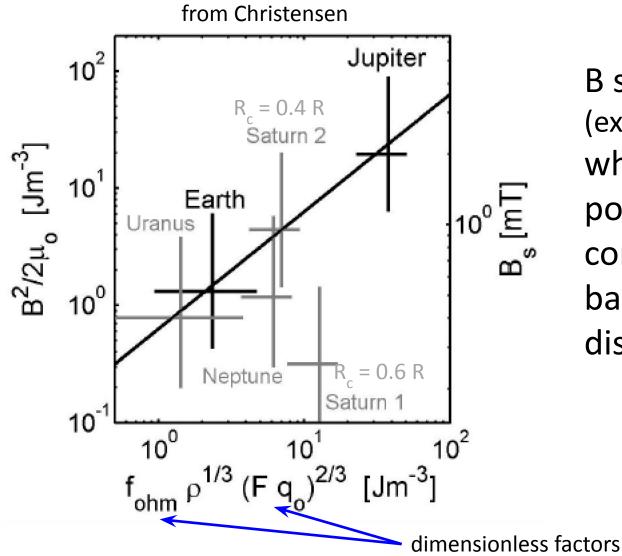
GAS GIANTS



ICE GIANTS



Level of saturation



B saturates (exp growth ends) when driving power – thermal conduction q₀ – balances Ohmic dissipation

Summary

- Magnetic fields all from dynamos
 - Conducting fluid
 - Complex motions w/ enough umph
- Create complex fields
- Fields evolve in time reverse occasionally
- Differences from different parameters: Rm, Re, Ro