Planetary Atmospheres and Habitability

Dave Brain LASP / University of Colorado

You are encouraged to be interactive

I. Atmospheres, Climate, and Habitability

The Contemporary climates of the terrestrial worlds are varied

	Venus	Earth	Mars	
Surface Temperature	740 K	288 K	210 K	
Surface Pressure	92 bars	1 bar	7 mbar	
Composition	96% CO ₂ ; 3.5% N ₂	78% N ₂ ; 21% O ₂	95% CO ₂ ; 2.7% N ₂	
H ₂ O content	20 ppm	10,000 ppm	210 ppm	
Precipitation	None at surface	rain, frost, snow	frost	
Circulation	1 cell / hemisphere, quiet at surface but very active aloft	3 cells / hemisphere, local and regional storms	1-2 cells / hemisphere or patchy circulation, global dust storms	
Maximum surface winds	~3 m/s	> 100 m/s	~30 m/s	
Seasonal Variation	None	Comparable northern and southern seasons	Southern summer more extreme	

Climate influences (surface) habitability

6

II. Changing Climate

Question: What could you do to a planet to change its climate?

Come up with 4 (or more) fundamentally different answers You have 6 minutes

Action

- Remove magnetic field
- Change distance to Sun
- Add life
- Change size
- Change tilt of planet
- Add ice cover
- Increase GHGs in atmosphere
- Have large impacts
- Change oceans
- Change plate tectonics
- Change planetary rotation
- Change surface pressure
- Add more volcanism
- Seed clouds!
- Change eccentricity of orbit
- Change the star
- Add large moons

Climate response

T decreases

Affects solar flux, which changes temperature Changes composition of atmosphere and hilarity ensues Change gravity, change extent of atmosphere Influence seasons, and temperature Increase albedo, reduce temperature Increase temperature Without Bruce Willis, we're doomed Change atmos. circulation Also change atmos. Circulation changes weather, circulation

Four Ways to Change T_{Surface}

Greenhouse Gas Content

Planetary Orbital Elements

9

Solar Output

The Sun was 25-30% fainter long ago

Total Luminosity

Planetary Orbital Elements

Mars tilt and eccentricity have led to periods of large and small polar caps (small and large atmosphere?)

Evidence for Climate Change

Venus

Strom et al., 1994

Evidence for Climate Change

Mars

Geomorphology

Geochemistry

Evidence for Climate Change

Earth

100's-1000's yrs

Trees and Coral Separation \rightarrow growth rate \rightarrow climate

Ice

100,000's yrs

Bubbles \rightarrow composition Isotopes \rightarrow temperatures Pollen \rightarrow conditions

Sediment

>1 million yrs

Fossils / pollen \rightarrow conditions Composition \rightarrow temperature Layering \rightarrow climate shifts Texture \rightarrow environment

14

Diffusive equilibrium, isotope ratios, and atmospheric loss

Fig. 5.2. Total number density and number densities of various constituents for mean atmospheres (from COSPAR, 1972). Example:

Earth D/H ~1/1000 Venus D/H ~(8-120)/1000 Mars D/H ~(5-6)/1000

Table 1 Martian isotope ratios and atmospheric loss*					
Isotope ratio	Measured value†	Amount lost to space (%)‡			
D/H	5	~60–74			
³⁸ Ar/ ³⁶ Ar	1.3	~50–90			
¹³ C/ ¹² C	1.05–1.07	~50–90			
¹⁵ N/ ¹⁴ N	1.7	~90			
¹⁸ O/ ¹⁶ O	1.025	~25–50			

*Values taken from refs 57–59, 62, 77 and 78, and references therein.
†Value estimated, observed or derived for martian atmosphere relative to terrestrial.
‡Calculated assuming Rayleigh fractionation. D/H range includes uncertainty in escape processes. Other ranges are based on uncertain timing of outgassing relative to escape.

Question: Suppose Mars loses oxygen atoms at a rate of 10²⁶ s⁻¹. How much atmosphere (in bars) would be lost in 4 Gy at this rate?

Helpful information:

•

1 bar = 10^5 Pascals R_M ~ 3400 km g_M ~ 3.8 m/s² Atomic number of oxygen = 8 1 year ~ π x 10⁷ s

16

BREAK

Atmospheric Source and Loss Processes

III. Atmospheric Escape (theory)

October 2015

 \rightarrow

Dave: "Can you make a graphic that looks something like this?" NASA: "Yes."

Requirements for Escape

1. Escape Energy		Venus	Earth	Mars
$\frac{1}{2}mv^2 = \frac{GMm}{r}$	V _{esc}	10 km/s	11 km/s	5 km/s
$\triangleright v = \sqrt{\frac{2GM}{2GM}}$	E(H+)	0.5 eV	0.6 eV	0.1 eV
V r	E(O)	9 eV	10 eV	2 eV

- 2. Directed Upward
- 3. No Collisions
 - Escape from exobase region

$$\frac{kT}{mg} = \frac{1}{nS}$$

Reservoirs for Escape

<u>Thermosphere</u>

<u>lonosphere</u>

<u>Exosphere</u>

T(z) ① Density << neutral density "collisionless" Diffusive equilibrium Chapman peaks from incident energy **Ballistic trajectories** V: ~120-250 km V: ~120-300 km V: ~250-8,000 km CO₂, CO, O, N₂ O₂⁺, O⁺, H⁺ Н E: ~75-1000 km E: ~85-500 km E: ~500-10,000 km NO⁺, O⁺, H⁺ O_2 , He, N_2 H, (He, CO_2 , O) M: ~80-200 km M: ~80-200 km M: ~200-30,000 km CO_2 , N_2 , COO₂+, O+, H+ H, (O)

Our star drives atmospheric escape (actually many processes!)

Extreme Ultraviolet

Solar Wind

Ionosphere

Extended Atmosphere

lons escape via multiple mechanisms

Extreme Ultraviolet

Solar Wind

Ion Escape

Escaping Species: $O^+ O_2^+$

Some ions crash into Mars and splash stuff out

Extreme Ultraviolet

Sputtering

0

0

 $M^{*} M^{*} M^{*} M^{*}$ $M^{*} M^{*} M^{*}$ $M^{*} M^{*} M^{*}$ $M^{*} M^{*} M^{*}$ $M^{*} M^{*} M^{*}$

Solar Wind

Escaping Species: OO_2

Photochemistry removes neutral oxygen

Extreme Ultraviolet

Solar Wind

Photochemical Escape

Escaping Species: O

Hydrogen escapes thermally

Extreme Ultraviolet

Solar Wind

Escaping Species: H

It's kind of a mess deliciously complicated

that looks ominous!

0

3

Thermal Escape

Some particles in a Boltzmann distribution have $v > v_{esc}$

Photochemical Escape

Photodissociation of molecules produces atoms with v>vesc

Sputtering

Particles crashing into the atmosphere splash others out

Ion Loss And especially here

Atmospheric ions accelerated in a planet's cusps, or get carried away by the solar wind

 $O_2 + h\nu \rightarrow O_2^+ + e^ O_2^+ + e^- \rightarrow O^* + O^*$

Question: Suppose Mars loses oxygen atoms at a rate of 10²⁶ s⁻¹. How much atmosphere (in bars) would be lost in 4 Gy at this rate?

Helpful information:

1 bar = 10^5 Pascals R_M ~ 3400 km g_M ~ 3.8 m/s² Atomic number of oxygen = 8 1 year ~ π x 10⁷ s

$$\Delta P = \Delta \frac{F}{A} = \frac{\Delta F}{A} = \frac{\Delta m \, g_{Mars}}{A} = \frac{\Phi \, m_0 \, \Delta t \, g_{Mars}}{4 \, \pi \, R_{Mars}^2} = \sim 100 \, mbar$$

Is this enough to change climate? Is it a lot? Is it a little?

IV. Atmospheric Escape (observed)

Atmospheric Escape from Mars

Ion Escape (O⁺, O₂⁺, CO₂⁺) ~7 x 10^{24} s⁻¹

Atmospheric Escape from Venus

Thermal Escape (H)

Photochemical Escape (O)

Sputtering Escape (N,O,C,etc.) ~ $??? s^{-1}$

Ion Escape (O⁺, O₂⁺, CO₂⁺, H⁺) ~5 x 10²⁴ s⁻¹

Fedorov et al., 2011

Atmospheric Escape from Earth

Thermal Escape (H) ~ 10²⁶ s⁻¹

Photochemical Escape (N,O)

Sputtering Escape (N,O,C,etc.)

Ion Escape (O⁺, H⁺) ~10²⁵ - 10²⁶ s⁻¹

V. Drivers of Atmospheric Escape

"External" drivers include photons, particles, and fields

Escape rates should have been greater long ago

VI.

Do Habitable Worlds Require Magnetic Fields?

Question: How should planetary magnetic fields influence atmospheric escape?

- A. They shouldn't
- B. The presence of a planetary magnetic field should decrease escape rates
- C. The presence of a planetary magnetic field should increase escape rates
- D. It depends

Magnetic fields should protect atmospheres

Simple physics: A magnetized planet deflects solar wind charged particles far from the atmosphere

- Solar wind doesn't encounter atmosphere
- Less energy for top of atmosphere
- → Atmosphere can't escape efficiently

Ion Escape Rates at Terrestrial Planets

Loss rate of "heavy" ions:

~ 10^{25} S⁻¹, give or take

Magnetic fields should not protect atmospheres

Simple physics: A magnetized planet captures more energy from the solar wind

- A magnetic field gives a larger cross-section
- Energy transferred to the atmosphere along magnetic field (e.g. aurora!)
- Escape is efficient, but non-global

Not all escape measurements are created equal

Courtesy R. Ramstad

Also, different escaping species reported by different instruments over different energy ranges by different investigators

Earth responds more strongly to the solar wind that Venus or Mars

Mars – Negligible / inverse dependence

Venus – Weak positive dependence

Earth – Strong positive dependence

Masunaga et al., [2019] *Ramstad et al.*, [2018c; 2020] *Schillings et al.*, [2019]

Ramstad and Barabash, 2020

There are lots of published studies of atmospheric escape based on simulations

Sun et al., 2021

Magnetic field influence on escape is not so simple!

A community tool for assessing atmospheric loss

MACH will construct a framework that enables the evaluation of atmospheric loss from an arbitrary rocky planet given information about the planet and its host star

Question: Suppose we detect a planet double the size of Venus around a 5 billion year old M-type star. The IAU names it AmitCopeLikaGross. The planet has half the orbital distance of Venus and, to our surprise, has detectable radiation belts. How might AmitCopeLikaGross's climate and surface habitability be different from that of Venus?

