Terrestrial Ionosphere(s)

Jan J Sojka

Center for Atmospheric and Space Sciences Utah State University, Logan, Utah 84322

- PART I: Local Ionospheric processes, and terrestrial ionospheres
- PART II: global I/T system

Heliophysics Summer School XI: Boulder, Colorado 7 August, 2017

Material adopted from the following authors.

- HSS lecture notes prepared by Professor Tim Fuller-Rowell (volume 1 HSS text book)
- HSS Chapter 13 volume 3 text book by Professor Stan Solomon.
- Robert Schunk and Andrew Nagy: their text "lonospheres", a Cambridge press Atmospheric and Space Science Series book.

Thanks also to Dana Longcope upon whose presentation I will build.

The take-away message from this talk would be an appreciation of how important a narrow layer in our ionosphere is for various heliophysics processes.

This layer has various names:

SAIR (definitions will come later)E-layerTurbopausePedersen and Hall conductivity layerAltitudes from 100 to 120 km

Heck it even applies to the Sun!

Neutral Atmospheres

- All ionospheres exist in an atmosphere.
- The thermosphere-ionosphere forms the neutral to plasma interface between planets with atmospheres and space.
- The composition of the ionosphere is governed by the atmosphere, chemistry, and the ionizing radiation.
- The atmospheric dy Apart from photons what ionosphere.
 Apart from photons what other forms of ionizing

radiation are there?

The Earth's thermospheric composition: the basis for the ionosphere

UtahState University

Earth's Upper Atmosphere's dependence upon the Sun's solar cycle and our Seasonal and day-night cycles. [courtesy of NRLMSIS-00E]

The solar cycle is effective only above 100 to 120 km!

JtahState

University

Lower atmosphere has turbulent mixing which leads to constant composition.

Above the turbopause the neutral species are in their own hydrostatic equilibrium.

Neat fact about the upper atmosphere

In the terrestrial upper atmosphere atomic oxygen is produced.

Atomic oxygen is associated with its own chemistry reactions.

Venus and Mars are viewed as having terrestrial ionospheres hence they need terrestrial atmospheres.

UtahState

Jniversity

A lot of CO_2 and then a different chemistry produces atomic O.

Ctr. Atmos. Space Science, 4405 Old Main Hill, Logan, UT 84322-4405

Altitude (km)

Ionospheres

- Ionospheres exist in a neutral gas.
- The relative plasma to neutral density is variable, for terrestrial planets it is less than 1%.
- The daytime plasma is mainly produced by solar EUV and soft X-ray ionization.
- The night time plasma is created by resonantly scattered sun light, Star light, Cosmic Ray ionization.
- Auroral charged particles from the magnetosphere produce ionization, hence plasma.
- The ionosphere is e magnetosphere by channels.
 If you had to guess at what altitudes are these

conductivity channels?

Atomic O+: F2-Layer is the main layer for Earth's lonosphere.

Above the peak it is in diffusive equilibrium with its plasma scale height.

Below the peak chemistry dominates, but molecular composition creates a large range of chemical reactions and temperature dependencies.

Earth's ionosphere chemistry-simplified

peak is called the E-region.

UtahState

niversıtv

300

Photoionization

- The Solar EUV irradiance is key.
- Only recently has the short wavelength component become routinely observable.
- Proxy indices are less than satisfactory!
- NASA: satellites TIMED(SEE) and SDO(EVE) have provided high resolution spectral and now temporal information about EUV irradiance variability.

Would someone like to describe the purpose of this slide?

Daytime thermal profiles for the thermosphere and ionosphere at Millstone Hill, MA.

A midlatitude location: left pane What does Exospheric equinox in 1970. Temperature refer to?

If the planet has no significant magnetic field, hence devoid of a magnetosphere, the atmosphere with photoionization is the PHYSICS needed to generate the ionosphere.

> But we on Earth are lucky and have a magnetosphere hence we get even more PHYSICS to complicate our ionosphere!!!

Lets take a break

Auroral Ionization

- The magnetosphere generates ionization via energetic particles, usually electrons.
- These particles are energized in the magnetosphere and create ionization and heating in the thermosphere-ionosphere.
- Auroral displays are the manifestation of this process.
- Ionospheric conductivity is a dynamic "resistor" in the M-I electro-dynamics (MHD).

6 different auroral electron populations and their deposition altitudes

Ctr. Atmos. Space Science, 4405 Old Main Hill, Logan, UT 84322-4405

Iniversitv

Pedersen and Hall Conductivity

Electric Fields and Winds

- In the F-region the electric field (and neutral winds) can induce plasma drifts to raise and lower the F-Layer.
- This modifies the plasma diffusion balance and hence density and profile shape.
- Joule heating of the atmosphere depends on the Pedersen conductivity and the square of the electric field.
- At all latitudes E X B can trans perpendicular to the magnetic would Joule Heating

be maximized?

Equatorward wind at mid latitudes with inclined magnetic field pushes plasma upward along the magnetic field direction to regions of different neutral composition

В В FIFI Duz What process are ExB DRIFT charged particles ELECTRIC FIELD obeying that prevents them following the wind or electric field? LATITUDE

> An Eastward Electric field together with the magnetic field creates an upward plasma drift.

The low latitude day time ionosphere is dominated by transport caused by the Eastward electric field. This results in plasma redistribution and the formation of the Appleton Anomaly (equatorial anomaly).

The Appleton anomalies also known as the Equatorial anomalies.

The F-region densities are shown as Log10 Ne (cm**-3)

POLARCAP-AURORAL LATITUDES $-1 < B_V < +1; B_Z < -1$ DE-2 orbit tracks 70° dum 06:00 MLT -0'1 18:00 MLT $18 \cdot$ 0.3 0.20

Midnight

Observed ionospheric plasma drift velocities measured from DE-2 over-layed with a corresponding 2-cell electric field pattern

POLARCAP-AURORAL LATITUDES

O+ F2-layer is the dominant ionospheric layer under quiet geomagnetic conditions. The height is about 300 km.

100 mV/m electric field, large!

However, during very disturbed geomagnetic conditions the rapid conversion of O+ into NO+ leads to a E/F1 layer becoming dominant. The peak height drops to 150 km!

- Morphology of the global ionosphere is a systems level problem.
- Many physics processes operate together as a system but in different latitude regions.
- Historically studies attempted to understand these processes individually and then "assimilate" their net effects...... NOT A GOOD APPROACH not a linear superposition problem!

Terrestrial Atmosphere ITM Processes

J. Grobowsky / NASA GSFC

Even simple E X B is complex because there are two separate sources of E

The ionosphere co-rotates, implying an E field, and then the magnetosphere's E field maps into the ionosphere and an atmospheric dynamo generated yet Another E field.

LABEL	1	2	3	4	5	6	7	8
CIRCULATION PERIOD (day)	1.00	1.01	0.10	1.34	0.50	0.31	0.18	0.11

GEOGRAPHIC LOCAL TIME COORDINATES

The F-region plasma as seen in a geographic local time from executes very complicated trajectories!

This means that a ground based observatory at high latitudes is not monitoring the same plasma flux tube continually, and hence the observer is not seeing the plasma evolution!

Joule heating: J. (E + V x B) Large temperature and circulation changes in the upper thermosphere

US-TEC – SWPC IRI plus data

"positive phase" and tongue of ionization

"negative phase"

Can you list important properties of the Earth's ionosphere between 100 and 120 km?

SAIR : Sun Atmosphere Interaction Region

But also

SAIR: Space Atmosphere Interaction Region

And there is lots more!

Plasma "bulge" and Storm Enhanced Density

May 30, 2003 01:00 UT TEC [10,100], TECu

Neutral density response to flares (Sutton and Forbes)

CHAMP satellite data

ATMOSPHERE

MARS, it also has an atmosphere!

Atomic oxygen is also present, as is a lot of carbon dioxide.

Plasma Frequency

Nomenclature and simple mathematical functions for the ionosphere.

A natural coordinate for the atmosphere is the pressure level!

1995 2000 DATE

2005 2010

1985

1990

(a)

The Earths magnetic field is a poor dipole!

But many models still use a dipole representation!

Schematic polar plot of the electric field called a 2-cell pattern.

The F-region plasma E X B drift trajectory directions are shown by the arrows.

The effect of the E X B induced electric field (or wind) on the ionospheric density and profile.

Thermospheric wind field are altitude dependent and responsive to Changes in magnetospheric energy input, STORMS.

Ion-neutral collisions in upper thermosphere frequent enough to drive high velocity neutral wind

Neutral Winds and Temperature: 300 km altitude

At mid-latitudes: can be high correlation between composition changes and ion density

The auroral electrons precipitation leads to heating and density increases/decreases in the ionosphere

Back of envelope calculation!

