Energetic Particles in the Heliosphere

Marty Lee

USA

Isotopic Composition

Elemental Composition

Stone et al., 1998

2003 Haloween Events

Impulsive Events

CIR Event: Ulysses

Kunow et al., 1999

Particle Acceleration

$\mathbf{E} = -c^{-1}\mathbf{V} \times \mathbf{B}$

Enrico Fermi (1949, 1954):

First-Order and Second-Order Fermi Acceleration

Transport Equations

Vlasov Equation

Transport in Radial V and B in the Solar Wind Frame

$$\frac{dF[t,r(t),\mu(t),\nu(t)]}{dt} = \frac{\partial F}{\partial t} + \frac{\partial F}{\partial r}\frac{dr}{dt} + \frac{\partial F}{\partial \mu}\frac{d\mu}{dt} + \frac{\partial F}{\partial \nu}\frac{d\nu}{dt} = \left(\frac{dF}{dt}\right)_{\text{scat}}$$

 $M = v_{\perp}^{2} / B \propto v^{2} (1 - \mu^{2}) r^{2} \qquad E = v^{2} + 2v\mu V + V^{2}$

Focused Transport Equation I

$$\frac{\partial F}{\partial t} + (V + v\mu)\frac{\partial F}{\partial r} - \frac{(1 - \mu^2)}{r}Vv\frac{\partial F}{\partial v}$$

$$+\frac{(1-\mu^2)}{r}(\nu+\mu V)\frac{\partial F}{\partial \mu} = \left(\frac{dF}{dt}\right)_{\text{scatt.}}$$

Particle Scattering I

Parker, 1964

$$\mathbf{B} = B_0 \left(\frac{dF}{dz} \mathbf{i} + \frac{dG}{dz} \mathbf{j} + \mathbf{k} \right)$$

Fieldlines:
$$x = F(z) + x_0$$
; $y = G(z) + y_0$

If $F, G \rightarrow F_{\pm}, G_{\pm}$ as $z \rightarrow \pm \infty$, particle remains on original fieldline!

$$F(z) = \varepsilon \sin(2\pi z / L) \exp(-z^2 / l^2)$$
$$G(z) = \varepsilon \cos(2\pi z / L) \exp(-z^2 / l^2)$$

Particle Scattering II

Particle Scattering III

$$\Delta v_{z} = -\Omega^{2} \frac{v_{\perp 0}}{v_{z0}^{2}} \alpha l(\cos\phi) \pi^{1/2} \exp\left[-\frac{l^{2}\Omega^{2}}{4v_{z0}^{2}} \left(1 - \frac{2\pi v_{z0}}{\Omega L}\right)^{2}\right]$$
$$\tau_{g} = \frac{L}{v_{z0}}$$

\Rightarrow pitch-angle diffusion!

Exercise 8 in Heliospheric Problems (M. Lee)

Focused Transport Equation II

$$\frac{\partial F}{\partial t} + (V + v\mu)\frac{\partial F}{\partial r} - \frac{(1 - \mu^2)}{r}Vv\frac{\partial F}{\partial v}$$

$$+\frac{(1-\mu^2)}{r}(\nu+\mu V)\frac{\partial F}{\partial \mu} = \frac{\partial}{\partial \mu}\left[(1-\mu^2)D_{\mu\mu}\frac{\partial F}{\partial \mu}\right]$$

Parker Transport Equation I

$$f = \frac{1}{2} \int_{-1}^{1} d\mu F$$

$$\frac{\partial f}{\partial t} + V \frac{\partial f}{\partial r} + \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 S_r \right) - \frac{2V}{3r} v \frac{\partial f}{\partial v} = 0$$

Generalize:

$$\frac{\partial f}{\partial t} + \mathbf{V} \cdot \nabla f + \nabla \cdot \mathbf{S} - \frac{1}{3} \nabla \cdot \mathbf{V} v \frac{\partial f}{\partial v} = 0$$

Parker, 1965

Parker Transport Equation II

S?

$$v\mu \frac{\partial f}{\partial z} = \frac{\partial}{\partial \mu} \left[(1 - \mu^2) D_{\mu\mu} \frac{\partial g}{\partial \mu} \right]$$

$$g = -\frac{1}{2} v \frac{\partial f}{\partial z} \int_0^{\mu} \frac{d\mu'}{D_{\mu\mu}}$$

$$S_{z} = \frac{1}{2} \int_{-1}^{1} d\mu v \mu g(\mu) = -K_{zz} \frac{\partial f}{\partial z}$$

$$K_{zz} = \frac{1}{8} v^2 \int_{-1}^{1} d\mu \frac{1 - \mu^2}{D_{\mu\mu}}$$

$$\mathbf{S} = -K_{\perp} \frac{\partial f}{\partial x} - K_{\perp} \frac{\partial f}{\partial y} - K_{zz} \frac{\partial f}{\partial z} + ?$$

Parker Transport Equation III

$$v_i v_j \frac{\partial F}{\partial x_j} + \frac{qB}{mc} v_i \left[\left(\mathbf{v} \times \mathbf{k} \right) \cdot \frac{\partial F}{\partial \mathbf{v}} \right] \simeq 0$$

$$\frac{\partial}{\partial x_j} \frac{1}{4\pi} \int d\phi \, d\mu v_z^2 \delta_{ij} f - \Omega \frac{1}{4\pi} \int d\phi \, d\mu v_i \frac{\partial F}{\partial \phi} = 0$$

$$\frac{1}{3}v^2\nabla f = \Omega(\mathbf{S} \times \mathbf{k})$$

$$\frac{1}{3}v^{2}\mathbf{k} \times \nabla f = \Omega \left[\mathbf{k} \times (\mathbf{S} \times \mathbf{k})\right] = \Omega \mathbf{S}_{\perp}$$

$$\mathbf{S}_{\perp} = \frac{v^2}{3\Omega} \mathbf{k} \times \nabla f \qquad \nabla \cdot \mathbf{S}_{\perp} = \nabla f \cdot \left(\frac{v^2 mc}{3q} \nabla \times \frac{\mathbf{B}}{B^2}\right) \equiv \nabla f \cdot \mathbf{V}_D$$

Parker Transport Equation IV

$$\frac{\partial f}{\partial t} + (\mathbf{V} + \mathbf{V}_D) \cdot \nabla f - \nabla \cdot (\mathbf{K} \cdot \nabla f) - \frac{1}{3} \nabla \cdot \mathbf{V} v \frac{\partial f}{\partial v} = 0$$

$$\frac{\partial f}{\partial t} + \nabla \cdot \left[-\mathbf{K} \cdot \nabla f - \frac{1}{3} \mathbf{V} v \frac{\partial f}{\partial v} + \frac{v^2}{3\Omega} (\mathbf{k} \times \nabla f) \right] + \frac{1}{3v^2} \frac{\partial}{\partial v} (v^3 \mathbf{V} \cdot \nabla f) = 0$$

The Hairy Ball?

Thomas and Gall, 1984

Shocks & Energetic Particles

Diffusive Shock Acceleration

$$V_z \frac{df}{dz} - \frac{d}{dz} \left(K_{zz} \frac{df}{dz} \right) - \frac{1}{3} \frac{dV_z}{dz} p \frac{df}{dp} = Q\delta(z)\delta(p - p_0)$$

$$f(z < 0) = \frac{3Q}{(V_u - V_d)p_0} \left(\frac{p}{p_0}\right)^{-\beta} \exp\left(\frac{Vz}{K}\right)$$
$$f(z > 0) = \frac{3Q}{(V_u - V_d)p_0} \left(\frac{p}{p_0}\right)^{-\beta} \qquad \beta = \frac{3X}{(X - 1)}$$

Exercise 5 in Heliospheric Problems (M. Lee)

Fisk, 1971;....

Axford, Leer & Skadron, 1977 Krymsky, 1977 Blandford & Ostriker, 1978 Bell, 1978

"Shock Drift" Acceleration

Pesses, 1981

Jokipii, 1982

y

$$|\Delta y| \approx \frac{\beta}{6} \frac{v^2}{V |\Omega_x|} \left[\frac{B_{d,z} / B_x}{1 + (B_{d,z} / B_x)^2} - \frac{B_{u,z} / B_x}{1 + (B_{u,z} / B_x)^2} \right]$$

$$(\Delta y, \Delta z)$$

$$|\Delta z| \approx V_{HT} \frac{\beta}{\sigma V_u} \left(\frac{K_u}{V_u} + \frac{K_d}{V_d} \right) \left(\frac{p}{p_0} \right)^{\sigma}$$

Quasi-Perpendicular Shock Simulation: Be Careful!

Giacalone, 1999

2003 Haloween Events

Pioneer Super Events

Pyle et al., 1984

Stone et al., 2008

Voyager 1 Energy Spectra

Stone et al., 2005

The Blunt Termination Shock

McComas and Schwadron, 2006

Fig. 3. ACR helium spectra just upstream of the shock (▲) (2004/313 to 350) and in the heliosheath [(O) 2004/352 to 2005/052, (×) 2005/053 to 104, (●) 2005/105 to 156]. The TSP, ACR, and GCR spectra overlap in the observed spectra in Fig. 2. Estimates of the TSP and GCR components have been subtracted in the regions of overlap to determine the ACR He spectra. The ACR He intensity did not reach a maximum at the shock, but continued to rapidly increase at lower energies in the heliosheath, indicating increasingly easy propagation from the ACR source to V1.

Stone et al., 2005

Power Law Index

 $\beta = 3X / (X - 1)?$

Van Nes et al., 1984

Beta(X) for X>1

Beta(X) for upstream Alfven waves only

Fisk et al., 2010

Ubiquitous Suprathermals

Fisk and Gloeckler, 2006

Wave Excitation

Instability Mechanism

Cyclotron Resonance Condition

$$\omega - kv_z + \Omega = 0$$
$$kv_z \approx \Omega$$

$$\omega_s \sim k V_{sw} \sim \Omega(V_{sw} / v_z) \propto B$$

Upstream Waves at Planetary Shocks

Russell et al., 1990

Wave Excitation - I

$$-V\partial I_{\pm}/\partial z = 2\gamma_{\pm}I_{\pm}$$

$$I \cong I_{+} = I_{+}^{\circ}(k) + \frac{4\pi^{2}}{k^{2}} \frac{V_{A}}{V} |\Omega_{p}| m_{p} \cos\psi \int_{|\Omega_{p}/k|}^{\infty} dvv^{3} (1 - \frac{\Omega_{p}^{2}}{k^{2}v^{2}}) (f_{p} - f_{p,\infty})$$

$$f_{p,\infty} = \overline{n}_p (4\pi v_{p,0}^2)^{-1} \,\delta(v - v_{p,0}) + \overline{C} v^{-\gamma} S(v - \overline{v}_{p,0})$$

Wave Excitation - II

$$I = I_{+}^{\circ} + \frac{4\pi^2}{k^2} \frac{V_A}{V} |\Omega_p| m_p \cos\psi \int_{|\Omega_p/k|}^{\infty} dv v^3 (1 - \frac{\Omega_p^2}{k^2 v^2}).$$

$$+\frac{\overline{C}\overline{v}_{0,p}^{-\gamma}}{\beta-\gamma}\left[\gamma(\frac{v}{\overline{v}_{0,p}})^{-\gamma}-\beta(\frac{v}{\overline{v}_{0,p}})^{-\beta}\right]S(v-\overline{v}_{0,p})\right\}\cdot$$

$$\cdot \exp\left\{-V\int_{0}^{z} dz' \left[\cos^{2}\psi \frac{v^{3}}{4\pi} \frac{B_{0}^{2}}{\Omega_{p}^{2}} \int_{-1}^{1} d\mu \frac{|\mu|(1-\mu^{2})}{I(\Omega_{p}\mu^{-1}v^{-1})} + \sin^{2}\psi K_{\perp}\right]^{-1}\right\}$$

Waves Upstream of Earth's Bow Shock

$$W_B = \frac{1}{3} \frac{V_A(\hat{e}_b \cdot \hat{e}_g)}{V_{sw}(\hat{e}_z \cdot \hat{e}_g) - V_A(\hat{e}_b \cdot \hat{e}_g)} W_p$$

Gordon et al., 1999

Upstream Waves

Hoppe et al., 1981

SLAMS

Lucek et al., 2008

Galactic Cosmic Rays

The GCR spectrum continues as a power, in energy (index of about -2.7)

Highest energy cosmic rays have the kinetic energy of a major league baseball.

Figure 1. The all particle spectrum of cosmic rays - Cronin, Gaisser, Swordy 1997

Modulation: Motivation for the Parker Equation

 $n = \int 4\pi p^2 f dp, \ \mathbf{V}_D = 0, \ \nabla = \mathbf{e}_r d / dr, \ \partial / \partial t = 0, \ K = K(r), \ \mathbf{V} = \mathbf{e}_r V$

$$\frac{1}{r^2}\frac{d}{dr}\left[r^2\left(Vn-K\frac{dn}{dr}\right)\right] = 0$$

$$Vn - K\frac{dn}{dr} = \frac{C}{r^2} \qquad C = 0$$
$$n(r) = n(r = R) \exp\left(-\int_r^R \frac{Vdr'}{K(r')}\right)$$

Example 3 in Heliospheric Problems (M. Lee)

Modulation in the Heliosheath

Understanding magnetic field topology III

Model of N. V. Pogorelov – $\text{Log } |\mathbf{B}| (\mu G)$

3D MHD GHMs (with neutral H) that are being actively developed

Izmodenov (Moscow) Opher (Michigan) Pogorelov (Alabama) Ratkiewicz (?) Washimi (Kyushu)

Solar cycle, 9° tilt at minimum (snapshot)

Fast/slow SW

LISM B in the HDP, 0.3 nT

Modulation wall

Florinski, 2010

: /home/valkyr/ace/sm/voyager/icrc13/ACC/talk/v1.H.He.C.O.12.342.13.161.ps

V1 GCR Electrons

Stone et al., 2013

Tycho's Supernova

Streaming instability driven by cosmic rays Lucek & Bell 2000

B field lines, t = 0

Galactic center

Galactic Anti-center

Cygnus Region

Vela pulsar