Solar Irradiances

Greg Kopp LASP / Univ. of Colorado

Heliophysics Summer School HAO, 7 Aug. 2017

Solar Irradiances

Greg Kopp - p. 1

The Sun's Energy

Energy output

- Sun's total output 3.8x10²³ kW
- Energy heating the Earth 1361 W/m^2
- Energy trivia
 - The total output of the Sun in one second would provide the U.S. with enough energy, at its current usage rate, for the next 4,000,000 years

Fuel type	2006 US Consumption [PWh]	2006 World Consumption [PWh]
Oil	11.71	50.33
Gas	6.50	31.65
Coal	6.60	37.38
Hydroelectric	0.84	8.71
Nuclear	2.41	8.14
Geothermal, wind, solar, wood, waste	0.95	1.38
Total	29.26	138.41

Heliophysics Summer Sch HAO, 7 Aug. 2017

Solar Irradiances

surface

Problems

- Determine the temperature of the Sun needed to produce 1361 W/m² irradiance at 1 AU
 - TSI S_E = 1361 W/m²
 - Sun's radius $R_s = 6.96265 \times 10^{10} \text{ cm}$
 - 1 AU R_E = 1.4959787x10¹³ cm
 - Flux at Sun's surface $S_S = S_E * (R_E/R_S)^2$
 - Flux $S_s = \sigma T^4$ ($\sigma = 0.567 \times 10^{-4} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ K}^{-4} = 0.567 \times 10^{-7} \text{ W m}^{-2} \text{ K}^{-4}$)
 - Temperature T = $(S_s / \sigma)^{1/4} = 5769.6 \text{ K}$

Planck Blackbody Spectrum

Heliophysics Summer School HAO, 7 Aug. 2017

Problem

- Integrate the Planck blackbody for a 5770° K Sun to determine the fraction of total energy in:
 - the visible region from 400 to 700 nm; and
 - the NUV, visible, & NIR spectral region from 300 to 2500 nm

Problem

- Integrate the Planck blackbody for a 5770° K Sun to determine the fraction of total energy in:
 - the visible region from 400 to 700 nm; and
 - the NUV, visible, & NIR spectral region from 300 to 2500 nm

$$E(\lambda,T) = \frac{2\pi hc^2}{\lambda^5} \frac{1}{e^{hc/kT\lambda} - 1}$$
$$E_{total} = \int_{0}^{\infty} E(\lambda,T) \cdot d\lambda = \sigma T^4$$

 $- E_{total} = \sigma T^4 (\sigma = 0.567 \times 10^{-4} \text{ erg s}^{-1} \text{ cm}^{-2} \text{ K}^{-4}) = 6.285 \times 10^{10} \text{ erg/s/cm}^2$

- 1) 400-700 nm: E = 2.299x10¹⁰ erg/s/cm²
- 2) 300-2500 nm: E = 5.868x10¹⁰ erg/s/cm²

Solar Irradiances

36.6%

93.4%

Solar Spectral Deviations from Planck Blackbody

• Fraunhofer (absorption) lines in visible and NIR

EUV emission

HAO, 7 Aug. 2017

Solar Irradiances

Greg Kopp - p. 7

Problem

- Determine the Fraunhofer line depth for a 500 nm (visible) absorption line with that of a line at 1.6 μ m (NIR)
 - Assume the continuum is at photospheric temperatures (5770° K) and the absorption lines are formed in local thermodynamic equilibrium at temperature minimum values (~4500° K)
 - This shows one reason that the NIR is less sensitive to scattered light than the visible

– 1.6 μm: <u>59%</u>

HAO, 7 Aug. 2017

The Sun – Condensed to Total Irradiance

Heliophysics Summer School HAO, 7 Aug. 2017

What Is Total Solar Irradiance (TSI)?

 Spatially- and spectrally-integrated radiant power from the Sun per unit area

Normalized to 1 AU

MDI Intensitygram

01-Sep-2003 00:00

Greg Kopp - p. 11

Heliophysics Summer School HAO, 7 Aug. 2017

Perspective on Flares Compared to the TSI

Heliophysics Summer School HAO, 7 Aug. 2017

Solar Irradiances

Greg Kopp - p. 12

Wavelet Analyses Indicate Timescales of Measured Variability

Heliophysics Summer Schoo HAO, 7 Aug. 2017

What Are the Timescales of TSI Variability?

- 0.01% over minutes
- <0.3% over a few days
 - Short duration causes negligible climate effect
- 0.1% over 11-year solar cycle
 - Small but detectable effect on climate
- 0.05-0.3% over centuries (unknown)
 - Direct effect on climate (Maunder Minimum and Europe's Little Ice Age)
- 10⁻¹⁰/yr on evolutionary timescales

- An unequivocal link between climate change and TSI has been established over the past three decades
 - Magnitude of natural climate forcing needs to be known for setting present and future climate policy regulating anthropogenic forcings
 - Future long-term solar fluctuations, similar to historical variations, are not known from current measurements or TSI proxies

The Sun had we man field to at Different Wavelengths it would be as boring as most astronomers seem to believe it is

2002/10/24 19:19

HAO, 7 Aug. 2017

What Is Spectral Solar Irradiance (SSI)?

Heliophysics Summer School HAO, 7 Aug. 2017

Short-Term Spectral-Solar-Irradiance Variability

courtesy of Odele Coddington, LASP

What Is "Irradiance"?

- Integrated radiant flux through an area
 - Total irradiance: spectrally integrated radiant flux through an area

- Spectral irradiance: radiant flux per wavelength unit through an area

Heliophysics Summer School HAO, 7 Aug. 2017

Short-Term Spectral Variability

Heliophysics Summer School HAO, 7 Aug. 2017

Solar Irradiances

Greg Kopp - p. 19

0.001

-0.002

-0.003

-0.001

-0.002

-0.001

-0.002

Mar

2004

Measured Spectral Irradiances

Heliophysics Summer School HAO, 7 Aug. 2017

Solar Irradiances

Greg Kopp - p. 20

Solar Activity Causes Spectral Irradiance Variations

H₂0 & CO₂ 104 UV VIS IR Solar variability sources are (mWm⁻²nm⁻¹) spectral irradiance wavelength-dependent... 10^{2} thus, irradiance variations depend on 0 km wavelength SOLAR IRRADIANCE 10⁰ 10^{4} Facular Contrast 10-2 spectral 10² variabilitu Y. Unruh (model 9) 10⁰ total variability 10^{-4} – нч I/I) 10-2 102 bolometric 10^{3} 10^{4} WAVELENGTH (nm) 10-4 Contrast 0.0 Allen (1981) -0.2 faculae bolometric -0.4 -0.6 -0.8 Sunspot Contrast Y. Unruh (model 9) -1.0sunspot 0.1 100.0 1.0 10.0 Wavelength (micron)

Heliophysics Summer Sch HAO, 7 Aug. 2017 courtesy of Judith Lean, NRL

Solar Irradiances

- 1.0

0.1

0.01

0.00

న

<u>5</u> E

4.5 billion years

Problems

- Compute the Earth temperature resulting from 1361 W m⁻² of total solar irradiance
 - Assume Earth is a grey-body with equal albedo and emissivity

Incoming Energy =
$$\pi R^2 \cdot A \cdot S$$

Outgoing Energy = $4\pi R^2 \cdot \varepsilon \cdot \sigma T^4$
Energy Balance $\Rightarrow T = 4\sqrt{\frac{A}{\varepsilon} \frac{1}{4\sigma}S} = 280K$

- $S = 1361 W/m^2$
- <u>Т = 278 К</u>

Where Does the Earth Get Its Energy?

	Heat Flux*	Uncertainty or Range		
Energy Source	[W m ⁻²]	[W m ⁻²]	Relative Input	
Solar Irradiance	340.2	0.0000%	(1.000E+00)	
Secondary Sources of Solar Origin (Total)	0.0268		7.90E-05	
Infrared Radiation from the Full Moon	0.01	-	2.90E-05	
Combustion of Coal, Oil, and Gas (in U.S.)	0.0052	-	1.50E-05	
Dissipation of Magnetic Storm Energy	0.00362	1.0E-05 to 1.0E-03	1.10E-05	
Airglow Emission	0.0036	-	1.10E-05	
Sun's Radiation Reflected from Full Moon	0.0018	-	5.30E-06	
Energy Generated by Solar Tidal Forces in the Atmosphere	0.00168	-	4.90E-06	
Energy Dissipated in Lightning Discharges	4.95E-04	9.0E-05 to 9.0E-04	1.50E-06	
Auroral Emission	3.70E-04	1.0E-05 to 1.0E-03	1.10E-06	
Zodiacal Irradiance	5.67E-05	5.65E-05 to 5.68E-05	1.70E-07	
Earthshine	1.93E-07	-	5.70E-10	
Secondary Sources of Non-Solar Origin (Total)	0.0900		2.60E-04	
Heat Flux from Earth's Interior	0.09	± 0.006	2.60E-04	
Energy Generated by Lunar Tidal Forces in the Atmosphere	1.96E-05	-	5.80E-08	
Galactic Cosmic Rays	8.50E-06	7.0E-06 to 1.0E-05	2.50E-08	
Total Radiation from Stars	6.78E-06	5.62E-06 to 7.94E-06	2.00E-08	
Cosmic Microwave Radiation Background	3.13E-06	±2.62E-09	9.20E-09	
Dissipation of Mechanical Energy from Micrometeorites	1.10E-06	1.9E-08 to 2.0E- 06	3.20E-09	
Total of All Secondary Energy Sources	0.1169		3.39E-04	
* global average Greenhouse g	ases are	not an energy	source.	
from "Where does Earth's atmosphere get its energy?" by A.C. Kren, P. Pilewskie, and O. Coddington, Space Weather				

from "Where does Earth's atmosphere get its energy?" by A.C. Kren, P. Pilewskie, and O. Coddington, *Space Weather and Space Climate*, 2017

Heliophysics Summer School HAO, 7 Aug. 2017

Total Input (relative) 1.000E+00

[°F]

278

42

Temperature [°K]

3000 X

Problems

- Compute Earth's temperature due to:
 - Solar radiation; and
 - Earth's internal energy sources alone

Incoming Energy = $\pi R^2 \cdot A \cdot S$ Outgoing Energy = $4\pi R^2 \cdot \varepsilon \cdot \sigma T^4$ Energy Balance $\Rightarrow T = 4\sqrt{\frac{A}{\varepsilon} \frac{1}{4\sigma}S} = 280K$

- $-\sigma$ = 0.567x10⁻⁴ erg s⁻¹ cm⁻² K⁻⁴ = 0.567x10⁻⁷ W m⁻² K⁻⁴
- Sun's radiation $S_s = 1361 \text{ W/m}^2$ <u>T = 278 K</u>
- Earth's internal sources $S_E = 2.6 \times 10^{-4} S_S$ T = 35 K

What If We Didn't Have the Sun?

	Heat Flux*	Uncertainty or Range	
Energy Source	[W m]	[W m]	Relative Input
Solar Irradiance	340.2	0.0000%	1.000E+00
Secondary Sources of Solar Origin (Total)	0.0268		7.90E-05
Infrared Radiation from the Full Moon	0.01	_	2.90E-05
Combustion of Coal, Oil, and Gas (in U.S.)	0.0052	-	1.50E-05
Dissipation of Magnetic Storm Energy	0.00362	1.0E-05 to 1.0E-03	1.10E-05
Airglow Emission	0.0036	-	1.10E-05
Sun's Radiation Reflected from Full Moon	0.0018	_	5.30E-06
Energy Generated by Solar Tidal Forces in the Atmosphere	0.00168	_	4.90E-06
Energy Dissipated in Lightning Discharges	4.95E-04	9.0E-05 to 9.0E-04	1.50E-06
Auroral Emission	3.70E-04	1.0E-05 to 1.0E-03	1.10E-06
Zodiacal Irradiance	5.67E-05	5.65E-05 to 5.68E-05	1.70E-07
Earthshine	1.93E-07	-	5.70E-10
Secondary Sources of Non-Solar Origin (Total)	0.0900		2.60E-04
Heat Flux from Earth's Interior	0.09	± 0.006	2.60E-04
Energy Generated by Lunar Tidal Forces in the Atmosphere	1.96E-05	-	5.80E-08
Galactic Cosmic Rays	8.50E-06	7.0E-06 to 1.0E-05	2.50E-08
Total Radiation from Stars	6.78E-06	5.62E-06 to 7.94E-06	2.00E-08
Cosmic Microwave Radiation Background	3.13E-06	±2.62E-09	9.20E-09
Dissipation of Mechanical Energy from Micrometeorites	1.10E-06	1.9E-08 to 2.0E- 06	3.20E-09
Total of All Secondary Energy Sources	0.1169		3.39E-04
* global average			
5			1
from "Where does Earth's atmosphere get its energy?" by A	C Kron D Dila	wekie and O Coddington	Space

Total Input (relative)	2.601E-04
Temperature [°K]	35
[°F]	-396

from "Where does Earth's atmosphere get its energy?" by A.C. Kren, P. Pilewskie, and O. Coddington, *Space Weather and Space Climate*, 2017

The Sun Is THE Dominant Driver of Earth's Climate

Fortunately, this 800 lb gorilla is very placid

	Heat Flux*	Uncertainty or Range	
Energy Source	[W m ⁻²]	[W m ⁻²]	Relative Input
Solar Irradiance	340.2	0.0000%	1.000E+00
Secondary Sources of Solar Origin (Total)	0.0268		7.90E-05
Infrared Radiation from the Full Moon	0.01		2.90E-05
Combustion of Coal, Oil, and Gas (in U.S.)	0.0052		1.50E-05
Dissipation of Magnetic Storm Energy	0.00362	1.0E-05 to 1.0E-03	1.10E-05
Airglow Emission	0.0036		1.10E-05
Sun's Radiation Reflected from Full Moon	0.0018		5.30E-06
Energy Generated by Solar Tidal Forces in the Atmosphere	0.00168		4.90E-06
Energy Dissipated in Lightning Discharges	4.95E-04	9.0E-05 to 9.0E-04	1.50E-06
Auroral Emission	3.70E-04	1.0E-05 to 1.0E-03	1.10E-06
Zodiacal Irradiance	5.67E-05	5.65E-05 to 5.68E-05	1.70E-07
Earthshine	1.93E-07		5.70E-10
Secondary Sources of Non-Solar Origin (Total)	0.0900		2.60E-04
Heat Flux from Earth's Interior	0.09	± 0.006	2.60E-04
Energy Generated by Lunar Tidal Forces in the Atmosphere	1.96E-05		5.80E-08
Galactic Cosmic Rays	8.50E-06	7.0E-06 to 1.0E-05	2.50E-08
Total Radiation from Stars	6.78E-06	5.62E-06 to 7.94E-06	2.00E-08
Cosmic Microwave Radiation Background	3.13E-06	±2.62E-09	9.20E-09
Dissipation of Mechanical Energy from Micrometeorites	1.10E-06	1.9E-08 to 2.0E- 06	3.20E-09
	Ţ		
Total of All Secondary Energy Sources	0.1169		3.39E-04
* global average			
from "Whore does Earth's atmosphere got its anargy?" by A.C. Krop, P. Dilowskia, and O. Coddington, Space Weather			

from "Where does Earth's atmosphere get its energy?" by A.C. Kren, P. Pilewskie, and O. Coddington, *Space Weather* and Space Climate, 2017

Sunspots

- Dark, "cool" regions 4000° K (as opposed to 6000° K)
- Magnetically active (~4000 Gauss fields)
- Sites of flares commonly
- Duration
 - Days to months

Heliophysics Summer School HAO, 7 Aug. 2017

History - Sunspots

1610-1801 - Explanations of sunspots

- Galileo Galilei (1564-1642) cloud-like structures in the solar atmosphere
- Christoph Scheiner (1575-1650) intra-Mercurial objects; dense objects embedded in the Sun's luminous atmosphere
- **René Descartes** (1596-1650) *floating aggregates of etheral matter accreted along the Sun's rotational axis, where centrifugal forces are negligible*
- William Herschel (1738-1822) & A. Wilson in 1774 openings in the Sun's luminous atmosphere, allowing a view of the underlying, cooler surface of the Sun (which was likely inhabited)

Herschel [1801]: Correlated the price of wheat in London with the number of visible sunspots, attributing the connection to reduced rainfall when the Sun was less spotted

History - Use of Telescope

1610 - First telescopic observations of sunspots

- Johann Goldsmid (1587-1616) in Holland
- Thomas Harriot (1560-1621) in England
- Galileo Galilei (1564-1642) in Italy
- Christoph Scheiner (1575-1650) in Germany

History – Europe's Little Ice Age

1645-1715 – Maunder Minimum

- Solar output decreased 0.1-0.3% for 70 years
- Earth temperatures were ~0.2-0.4 C colder than the early 1900s

Heliophysics Summer School HAO, 7 Aug. 2017

What Determines Climate?

Heliophysics Summer School HAO, 7 Aug. 2017

What Is Climate?

- Climate the total of all statistical weather information that helps to describe the variation of weather at a given place for a specified interval of time. In popular usage, the synthesis of weather at some locality averaged over some time period (usually 30 years) plus statistics to include extremes in weather.
- " 'Climate' is what you expect; 'weather' is what you get." [Gary Rottman, 2003]

Greg Kopp - p. 34

There Are Many Causes of Climate Change

El Nir

La Niň

Natural Forcings

solar variability - direct and indirect effects
volcanic eruptions - stratospheric aerosols

Internal Oscillations

- atmosphere-ocean couplings
 - El Niño Southern Oscillation (ENSO)
 - North Atlantic Oscillation (NAO)

Land Cover Changes

Anthropogenic Forcings

- atmospheric GH gases CO₂, CH₄, CFCs, O₃, N₂O
- tropospheric aerosols direct and indirect effects of soot,

sulfate, carbon, biomass burning, soil dust

Climate Influences

Heliophysics Summer Schoo HAO, 7 Aug. 2017 courtesy of Judith Lean, NRL

Solar Irradiances

Greg Kopp - p. 36

"Components" of Global Temperatures

Heliophysics Summer School HAO, 7 Aug. 2017

Global Surface Temperature Responses Since 1890

HAO, 7 Aug. 2017

Decompositions of historical and recent global surface temperatures give consistent individual natural and anthropogenic components:

Natural components account for <15% of warming since 1890

Regional Annual Response Patterns

Problems

- Compute the sensitivity of Earth's temperature to TSI variations
 - Compute the expected temperature changes for a 0.04% lower Maunder Minimum TSI value
 - Compute the expected temperature changes for a 0.1% higher solar maximum TSI value (assuming the climate system has time to respond)

Energy Balance
$$\Rightarrow T = 4\sqrt{\frac{A}{\varepsilon} \frac{1}{4\sigma}S} = 280K$$

$$\Delta T = \frac{dS}{4S} \cdot T$$

 $- 1) \Delta T = -0.028 C$

– 2) ∆T =

- Sensitivity $\kappa = \Delta T / \Delta S = 0.051 \text{ C per W} / \text{m}^2$

0.070 C

(neglects x4 global average)

What Do You Need for a Climate Data Record?

- Accurate measurements over long (climate scale) time periods
 - How accurate? How long?
 - Must detect small changes above natural fluctuations
 - Need estimates of expected variability
 - Drives modeling capability
 - Drives measurement stability and duration
- Patience...
 - ... Or a historical record...

Historical TSI Reconstructions Rely on Proxies

HAO, 7 Aug. 2017

Climate Records Similarly Rely on Proxies

- Ice core samples (trapped air, dust, volcanoes)
- Tree rings (moisture, temperature, existence of plants, fires)
- Sea surface levels and ocean sedimentation (dust, ice floas)
- Rocks and sedimentation, corals, microfossils

Paleo-Climate Temperatures

Temperature of Planet Earth

Models of Solar Irradiance Variations

- Empirical (regression)
 - TSI with sunspots and faculae (or other solar activity proxies)
 - SSI below 300 nm less sensitive to sunspot darkening
- Physical
 - Atomic processes and solar atmospheric models
- Summary of effectiveness
 - Good for short-term variations, poor for long-term (secular)

Proxy Models of TSI Variations

- NRLTSI2 model has two components:
 - Bright faculae
 - e.g. Mg II C/W index
 - Dark sunspots
 - e.g. sunspot area

Heliophysics Summer Schoo HAO, 7 Aug. 2017 courtesy of Judith Lean, NRL

Sunspots and Faculae

Heliophysics Summer School HAO, 7 Aug. 2017 courtesy of Judith Lean, NRL

Proxy Models of SSI Variations

Naval Research Lab. Solar Spectral Irradiance (NRLSSI: Lean 1990, 2005, 2015)

Determines wavelength-dependence of rotational modulation by multiple regression of SORCE/SSI with facular and sunspot indices

 $F(\lambda,t)-F(\lambda)_{smooth} = a(\lambda) + b(\lambda) \times [Mg(t)-Mg_{smooth}] + c(\lambda) \times [S(t)-S_{smooth}]$

Uncertainties in modeled SSI scale with solar activity, including

- Absolute-scale uncertainty of Quiet Sun reference
- Scaling-coefficient statistical uncertainties
- Facular-brightening & sunspot-darkening value uncertainties

Climate Model Response to Radiative Forcing

with "equilibrium" response

Current understanding assumes that climate response to solar radiative forcing is thermodynamic --BUT empirical evidence suggests it is dynamic, rather than (or as well as) thermodynamic ... engages existing circulation patterns (Hadley, Ferrel, and Walker cells) and atmosphere- ocean interactions (ENSO)

... involves both direct (surface heating) and indirect (stratospheric influence) components.

Solar irradiance provides a well specified external climate forcing for testing models and understanding

courtesy of Judith Lean, NRL

Atmospheric Absorption of Solar Radiation

Heliophysics Summer Schoo HAO, 7 Aug. 2017

Solar Irradiances

of Erik Richard, LASP

Fifth Assessment Report (AR5) of the IPCC, 2013

HAO, 7 Aug. 2017

Historical Measurements of the "Solar Constant"

- Claude Poullet (1837)
 - 1227 W m⁻² (17.6 kcal m⁻² min⁻¹)
- John Hershel (1837)
- Sam Langley (1881)
 - $-2903 \text{ W} \text{ m}^{-2}$
- Charles Abbot (1958)
 - 1465 W m⁻²
 - Solar variations ~0.1%
- Labs and Neckel summary (1971)
 - 1360 W m⁻² ± 1%

Accurate Radiometry Requires Subtle Corrections

Electrical Heating to Maintain Constant Temperature As Sunlight Is Modulated Determines Radiant Power

• Aperture knowledge accuracy

$$\frac{\Delta A}{A} = \frac{2\pi r \cdot \Delta r}{\pi r^2} = 10^{-4} (100 \text{ ppm}) \implies \Delta r = 200 \text{ nm}$$

Doppler correction due to S/C orbit velocity

$$2\frac{v}{c} = 2 \cdot \frac{8 \times 10^5 \text{ cm/s}}{3 \times 10^{10} \text{ cm/s}} \approx 5 \times 10^{-5} \implies \pm 50 \text{ ppm}$$

TSI Missions

Heliophysics Summer School HAO, 7 Aug. 2017

Solar Irradiances

Greg Kopp - p. 69

- Continuity applies to both temporal and spectral coverage
 - However, continuity is only beneficial if measurements have good long-term stability

Heliophysics Summer Schoo HAO, 7 Aug. 2017

Value of Spectral-Irradiance Measurements for Climate Science

TSI Measurements

- 1. Are the most stable solar irradiance measurements
 - Achieve stabilities necessary to detect climate-relevant solar variability
- 2. Provide ~40 year solar-irradiance record of entire radiative input to Earth's climate system

Fundamental Solar-Irradiance Science Questions

- What are secular (long-term) variations in solar irradiance?
- What solar activities cause variability at different wavelengths?
- What was the solar irradiance during the Maunder Minimum?
- How good are sunspot and isotope proxies of solar irradiances?
- How much solar variability is expected?
 - Based on observations of the Sun and observations of other stars?
 - Based on physical models?
- What is the Earth's climate sensitivity to solar variability?

