

























## At what Altitude is Energy Deposited in an Atmosphere?

Controlled by *cross sections* of atmospheric gases for absorption ( $\sigma$ ) or ionization ( $\sigma_i$ ). Which are in general a function of wavelength ( $\lambda$ ).

For a single-species, plane-parallel atmosphere, at any particular  $\lambda$ :

Ionization Rate = (radiation intensity) x (ionization cross section) x (density)

$$q(z) = q_z = I_z \sigma_i n_z$$

Beer's law:  $I_z = I_{\infty} \exp(-\tau_z)$ where  $\tau_z$  is the optical depth:  $\tau_z = \frac{\sigma N_z}{\mu} = \frac{\sigma n_0 H}{\mu} \exp\left[-\frac{z - z_0}{H}\right]$ and  $\mu = \cos$  (solar zenith angle)

$$q_{z} = I_{\infty} \exp(-\tau_{z})\sigma_{i}n_{0} \exp\left[-\frac{z-z_{0}}{H}\right]$$
$$q_{z} = I_{\infty}\sigma_{i}n_{0} \exp\left[-\frac{z-z_{0}}{H}-\tau_{z}\right]$$

This expression (due to Sidney Chapman) is known as the Chapman Function.

14

















| Types of Ionospheric Chemical Reactions                                                       |    |
|-----------------------------------------------------------------------------------------------|----|
| Radiative Recombination                                                                       |    |
| $X^+ + e^- \rightarrow X + hv$                                                                |    |
| slow, rate coefficients of the order of 10 <sup>-12</sup> cm <sup>3</sup> s <sup>-1</sup>     |    |
| Dissociative Recombination                                                                    |    |
| $XY^+ + e^- \rightarrow X + Y + kinetic energy$                                               |    |
| fast, rate coefficients of the order of 10 <sup>-7</sup> cm <sup>3</sup> s <sup>-1</sup>      |    |
| Charge Exchange                                                                               |    |
| $WX^+ + YZ \rightarrow WX + YZ^+$                                                             |    |
| moderately fast, rate coefficients of the order of $10^{-10}$ cm <sup>3</sup> s <sup>-1</sup> |    |
| Atom-Ion Interchange                                                                          |    |
| $X^+ + YZ \rightarrow XY^+ + Z$                                                               |    |
| rate depends on the strength of the YZ bond                                                   |    |
|                                                                                               |    |
|                                                                                               | 24 |



| Simple Case – Single Species Molecular Atmosphere                                                                                                                                        |                                                  |    |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|----|--|--|--|--|
| $M_2 + h\nu \rightarrow M_2^+$<br>$M_2^+ + e^- \rightarrow M + M$                                                                                                                        | ionization rate $q$<br>rate coefficient $\alpha$ |    |  |  |  |  |
| Assuming photochemical equilibrium: $q = \alpha [M_2^+] [e^-]$                                                                                                                           |                                                  |    |  |  |  |  |
| Assuming charge neutrality: $[e^{-}] = (q/\alpha)^{1/2}$                                                                                                                                 |                                                  |    |  |  |  |  |
| The <i>E</i> region ionosphere, ~100~150 km, contains mostly molecular ions, photochemical equilibrium applies, and most dissociative recombination rates are similar (i.e., very fast). |                                                  |    |  |  |  |  |
| This formula approximates ion densities in the " <i>E</i> region" of Earth's ionosphere, which is, roughly speaking, a "Chapman Layer."                                                  |                                                  |    |  |  |  |  |
|                                                                                                                                                                                          |                                                  | 26 |  |  |  |  |

































## Why are the ionospheres of Mars and Venus, although similar to each other, so different from Earth?

On Mars and Venus the most abundant ion is  $O_2^+$ , and also  $O^+$  at high altitude. Unlike Earth, there is no "*F* layer", and very little ionosphere at night.

- Why doesn't O<sup>+</sup> have a longer lifetime on Mars and Venus?
- Why is there so much  $O_2^+$  when they have so little  $O_2$  in their atmospheres?

| Primary Atmospheric Composition of the Terrestrial Planets |        |                  |                     |            |  |  |  |
|------------------------------------------------------------|--------|------------------|---------------------|------------|--|--|--|
|                                                            | Planet | Molecule         | Abundance<br>(bars) | % of Total |  |  |  |
| The atmospheres                                            |        |                  |                     |            |  |  |  |
| of Venus, Earth and                                        | Venus  | CO <sub>2</sub>  | 87                  | 96.5%      |  |  |  |
| Mars contain many                                          |        | N <sub>2</sub>   | 3.2                 | 3.5%       |  |  |  |
| of the same gases,<br>but in very different                |        | SO <sub>2</sub>  | ~0.01               | ~0.01%     |  |  |  |
| absolute and                                               |        |                  |                     |            |  |  |  |
| relative abundances.                                       | Earth  | N <sub>2</sub>   | 0.78                | 77%        |  |  |  |
|                                                            |        | O <sub>2</sub>   | 0.21                | 21%        |  |  |  |
|                                                            |        | H <sub>2</sub> O | ~0.01               | ~1.0%      |  |  |  |
|                                                            |        | CO <sub>2</sub>  | 0.0004              | 0.04%      |  |  |  |
|                                                            |        |                  |                     |            |  |  |  |
|                                                            | Mars   | CO <sub>2</sub>  | 0.0062              | 95%        |  |  |  |
|                                                            |        | N <sub>2</sub>   | 0.0002              | 3%         |  |  |  |
|                                                            |        | Ar               | 0.0001              | 2%         |  |  |  |
|                                                            |        | H <sub>2</sub> O | ~10 <sup>-6</sup>   | ~0.01%     |  |  |  |
|                                                            |        |                  |                     |            |  |  |  |

43



























| Summary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Why does the ionosphere occur in "layers?"</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| - It doesn't, really, but there is such a thing as a Chapman function.                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <ul> <li>Since the Earth's ionosphere is produced mostly by solar radiation, why does it<br/>persist at night?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
| $-$ Because of the long lifetime of O+, which is due its slow reaction with $\mathrm{N_{2^{-}}}$                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <ul> <li>Since most ionization occurs between 100 to 200 km in altitude, why is most of the<br/>ionosphere above 300 km altitude?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                 |
| <ul> <li>Also because of the long lifetime of O<sup>+</sup>.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <ul> <li>Why are the ionospheres of Venus and Mars so different from Earth's?</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| — Because they have $CO_2$ in their atmospheres, which rapidly reacts with O <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The F-region ionosphere is unique to Earth among the known planets. This is due to its peculiar atmosphere, lacking in $CO_2$ , dominated by $N_2$ , and carrying its oxygen in unusual and reactive states. Earth has a significant carbon budget, and once had much higher levels of $CO_2$ in its atmosphere, but most of its carbon is currently locked up in the crust in the form of carbonate rocks. Thus, the F-region ionosphere may be a recent event in the history of Earth, an artifact of geology and biology. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

