

Offset Tilted Dipole Approximation

Magnetic Potential

 3-D harmonics$V=R_{\mathrm{p}} \sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{R_{\mathrm{p}}}{r}\right)^{n+1} P_{\text {coefficients - constants }}^{m}(\cos \theta) \underbrace{\left.h_{n}^{m} \sin m \lambda\right),}_{g_{n}^{m} \cos m \lambda}$

Same technique used to model cosmic microwave background

or interior of Sun with Helioseismology

Earth - International Geomagnetic Reference Field

International Geomagnetic Reference Field 2010

Br surface

1.From accurate measurement of surface field:
2.Extrapolate to core-mantle boundary = dynamo

Br core-mantle boundary
3. Derive core flows
4. Secular variation \& reversals.....

$$
\left.\frac{\partial \mathrm{B}_{\mathrm{r}}}{\partial \mathrm{t}}=-\nabla_{h} \bullet\left(\mathbf{u}_{h} \mathrm{~B}_{\mathrm{r}}\right) \right\rvert\,
$$

Hulot et al. 2010

Geomagnetic $=$ best fit dipole

Magnetic $=$ where $\mathrm{B}=\mathrm{Br}$

Secular variation

Dipole dropped by 9\% since 1840 Reconstructions of core field morphology 1590 - now Fluctuations of non-dipole parts on time scales 50-400 yrs Stability of high-latitude flux lobes Westward drift in Atlantic / Africa

Br through a reversal

Hulot et al. 2010
Pavlov \& Gallet 2005

Polarity reversals:

1. variable in duration and

2. rate

Moon \& Mars: All Crustal Remanent Magnetization

- Did Moon ever have dynamo?
- Mars' dynamo died >3.5 BYA.

Planetary Dynamos

Volume of electrically conducting fluid 1 which is convecting (2) and rotating

All planetary objects probably have enough rotation - the presence (or not) of a global magnetic field tells us about (1) and (2)

Earth: Internal structure \& energetics

- Seismology: Dense core with $R_{c} / R_{p}=0.55$
- Fe only cosmochemically abundant element matching density
- No shear waves in outer core, hence it is liquid
- Solid inner core with $0.35 \mathbf{R}_{\mathbf{c}}$
- ~10\% light element (Si, S, O, ...) in outer core, less in inner core

- Earth heat flow 44 TW. Core

 fraction estimated 3-15 TW- Core heat flow mostly due to secular cooling

Why Don't Venus or Mars have Dynamos?

- Enough rotation - even for Venus
- Conducting fluid core - probably
- Lack of convection in core?

1. If....Mantle convection controls heat flow from core. Then....Lack of plate tectonics suggests less efficient cooling of interior and lower heat flux from core
2. No inner core means no latent heat of solidification and no enhancement of lighter material in the outer core

Mercury \& Ganymede

What drives convection in these small bodies?

Liquid Water, Ammonia, Methane
Rock

Uranus and Neptune have much less mass
$>$ Lower pressures
$>$ No metallic hydrogen
$>$ Weak \& irregular magnetic fields produced in water layer, deep below gas envelope

Planet	$\mathrm{Rc} / \mathrm{Rp}$	Bo $[\mu \mathrm{T}]$	Tilt	Quad $/$ Dipole
Earth	0.55	31	$+9.92^{\circ}$	0.04
Jupiter	0.84	428	-9.6°	0.10
Saturn	0.6	21	$<-1^{\circ}$	0.02
Uranus	0.7	23	-59°	1.3
Neptune	0.8	14	-47°	2.7

Even with the Best Equation of State - Still lots of unknowns

Magnetic Spectra of Earth and Jupiter

Current knowledge of Jupiter is limited to $\mathrm{n}<4$

Earth dynamo at n >14 is hidden by crustal field

Juno will measure out to $\mathrm{n} \sim 20$

Determine spectral shape, dynamo radius, and secular variations

$\mathbf{R}_{\text {Chapman-Ferraro }} / R_{\mathrm{p}} \sim\left\{\mathrm{B}_{\mathrm{o}}{ }^{2} / 2 \mu_{o} \rho_{\mathrm{sw}} \mathrm{V}^{2}{ }_{\text {sw }}\right\}^{1 / 6}$

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
B_{o} Gauss	.003	.31	4.28	.22	.23	.14
R_{C} Calc.	$1.4 \mathrm{R}_{\mathrm{M}}$	$10 \mathrm{R}_{\mathrm{E}}$	$42 \mathrm{R}_{\mathrm{J}}$	$19 \mathrm{R}_{\mathrm{S}}$	$25 \mathrm{R}_{\mathrm{U}}$	$24 \mathrm{R}_{\mathrm{N}}$
R Obs.	$1.4-1.6$ R_{M}	$8-12$ R_{E}	$60-90$ R_{J}	$16-22$ R_{S}	$18 \mathrm{R}_{\mathrm{U}}$	$23-26$ R_{N}

Mercury \& Ganymede

Mercury - Magnetic field detected by Mariner 10 in 1974

Ganymede - Magnetic field detected by Galileo in 1996

Uranus

-Highly asymmetric,
-Highly non-dipolar
-Complex transport (SW + rotation)
-Multiple plasma sources (ionosphere + solar wind + satellites)

Neptune

Similarly complex as Uranus

Juno arrives at Jupiter July 4th 2016

Launch: August 2011

5 year cruise
Baseline mission:
32 polar orbits
Perijove ~5000 km 11 day period
Spinner
Solar-powered

Science Objectives:

Origin of Jupiter
Interior Structure
Atmosphere Composition \& Dynamics
Polar Magnetosphere

Polar Magnetosphere

Juno passes directly through auroral field lines

Measures particles precipitating into atmosphere creating aurora

Plasma/radio waves reveal processes responsible for particle acceleration

UV \& IR images provides context for in-situ observations

