

Planetary outer atmospheres: interfaces from atmospheres to magnetospheres

Marina Galand Imperial College London, UK

Why should we care about giant planets?

Our Solar System is the only piece of the Universe that we can examine *in situ*.

To understand the many extrasolar giant planets being discovered, we need to study giant planets in our own neighbourhood.

Outline

1. Setting the scene

- Thermosphere/lonosphere
- Energy sources

2. Ionosphere at the giant planets

- What? How? Where? How much?
- 3. Auroral emissions
- 4. Magnetosphere-ionosphere-thermosphere coupling
 - Energy crisis at the giant planets
- 5. Future prospect

Setting the scene

Atmospheres in the solar system

Atmosphere composition					
N ₂ atmospheres • Earth • Titan • Triton • Pluto	CO ₂ atmospheres • Venus • Mars • Callisto (exosphere)		<pre>He/H/H₂ atmospheres • Jupiter: P10/P11/V1/ V2/Ulysses/Cassini, Galileo • Saturn: P11/V1/V2, Cassini-Huygens</pre>		
			Uranus: V2Neptune: V2		
H ₂ O atmosphere (exosphere) • Comets • <u>Enceladus</u>		<pre>0/0₂/H₂0 atmosphere (exosphere) • Ganymede • Europa</pre>			
<pre>S0₂ atmosphere (exosphere) • Io</pre>					

Thermal Profiles

[[]Credit: I. Müller-Wodarg]

Outer (Upper) Atmosphere

- Gravitationally bound

- Key transition region between the lower atmosphere and the magnetosphere/space environment
- Energy and momentum sources:
 - EUV/FUV solar radiation

• Forcing from below (e.g., gravity waves)

Ionosphere

- *lonized part* of the upper atmosphere
- Present at any planet (or moon) which has an atmosphere
- Conducting layer:
 - Key source of *heating* of the high latitude upper atmosphere
- -Key layer for coupling between the upper atmosphere and the magnetosphere:
 - Closure of magnetospheric current system

Tilts of planetary magnetic fields with respect to their rotation axis

Introduction: Solar and magnetospheric particle deposition

Creation of an ionosphere

> Major contribution on chemistry, dynamics, & energetics

MAGNETOSPHERE-IONOSPHERE-THERMOSPHERE COUPLING

 Is there any atmosphere-magnetosphere link at low- & mid-latitudes?

Ionosphere at the Giant Planets

Ionization sources

- Ionisation potential:
 - $-H_2$: 15.43 eV $\leftarrow \rightarrow$ 80 nm
 - -H: 13.60 eV $\leftarrow \rightarrow$ 91 nm
 - $-CH_4:12.55eV \leftrightarrow 99 nm$

13 eV ←→ ~100 nm

• Solar EUV radiation (1-10, 10-100 nm):

– Solar flux / (Sun-planet distance)²

- Energetic particles from the space environment
 - A few keV to a few 100s keV

Energy sources

	Solar EUV input*	Auroral input*	Auroral particle input**
Earth (1 AU)	500 GW	80 GW	1-10 keV
Jupiter (5.2 AU)	800 GW	10 ⁵ GW	30-200 keV 2-30 mW m ⁻²
Saturn (9.5 AU)	200 GW	(5-10)x10 ³ GW	10-20 keV ~ 1 mW m ⁻²
Uranus (19 AU)	8 GW	100 GW	-
Neptune (30 AU)	3 GW	1 GW	-

* Auroral input refers to "particle + Joule heating" (Strobel 2002)
** Values valid for the main auroral oval, inferred from the analysis of auroral emissions (e.g., Fox et al. 2008, Gustin et al. 2004, 2009)

Two electron populations

Plasma population in the upper atmosphere

- Ionospheric, thermal population (e-, ions):
 - Bulk of the plasma population
 - Thermalized through collisions
 - →Fluid treatment: macroscopic quantities

- Number density n (continuity equation), bulk velocity <u>u</u> (momentum equation), temperature T (energy equation)

- Suprathermal particles (<u>e-</u>, ion, neutrals):
 - Of solar or magnetospheric origin (also: meteor, ...)
 - Small in terms of density (high energy tail)
 - Source of energy to the upper atmosphere (e.g., ionisation, excitation/dissociation, thermal electron heating)
 - →Kinetic treatment: microscopic quantity
 - Particle intensity I_e (Boltzmann equation) \rightarrow Pe, Qe, ...

The solar soft X-ray and EUV radiation from the hot transition region and corona are responsible for the creation of an ionosphere.

Ionization processes

Range of ionization processes:

```
•Photoionization: hv + M \rightarrow M^+ + e^-
```

```
•e-impact ionization: e^- + M \rightarrow e^- + M^+ + e^-
```


Energy deposition

* Photoelectrons, Auroral electrons, secondary electrons

Altitude of deposition

Energy deposition of auroral electrons Auroral electrons – Energy flux $Q_{prec} = 1 \text{ mW m}^{-2}$ е 3000 Supratherm. M ^{M⁺} e Simulation 0.4 electron Electron-impact 0.5 ionization 2500 0.8 Altitude (km) 12000 (km) Incident e-1.5 energy (keV) 2 3 6 10 1000 10² 10^{3} 10^{1} Electron production rate $(cm^{-3}s^{-1})$

$$P_e(z) = 4\pi \sum_n n_n(z) \int_{E_{\min}}^{E_{Max}} I_e(E, z) \sigma_n^{ioni}(E) dE \propto Q_{prec}$$

Solar versus auroral particle deposition

Continuity equation applied to the ionospheric plasma

Chemical loss of atomic ions

Radiative Recombination of Atomic Ions

$$X^{+} + e \xrightarrow{RR} X + photon \qquad \text{Slow}$$
$$L_{X^{+}}^{RR} = \alpha_{X^{+}}^{RR} n_{X^{+}} n_{e} \qquad \text{Ion loss Rate}$$

• Ion-atom Interchange

$$X^{+} + YZ \xrightarrow{IAI} XY^{+} + Z$$

Dominant

$$L_{X^{+},YZ}^{IAI} = k_{X^{+},YZ}^{IAI} \ n_{X^{+}} n_{YZ}$$

Chemical loss of <u>terminal</u>, molecular ions

• Dissociative Recombination of e- and molecular ions

$$XY^{+} + e \xrightarrow{DR} X + Y \qquad \qquad L_{XY^{+}}^{DR} = \alpha_{XY^{+}}^{DR} n_{XY^{+}} n_{e} \qquad \begin{array}{c} \text{Dominant} \\ \text{for terminal} \\ \text{ions} \end{array}$$

• If XY⁺ is the dominant ion,

$$L_{XY^+}^{DR} \approx \alpha_{XY^+}^{DR} n_e^2$$

Photochemical equilibrium

- Atomic ion or non-terminal ion: $t_c = \frac{1}{k n_{YZ}}$ Terminal molecular ion: $t_c = \frac{1}{\alpha n}$ $X^+ + YZ \xrightarrow{IAI} X + YZ^+$ $XY^+ + e^- \xrightarrow{DR} X + Y$ **Chemical loss timescales:**

٠

•

- Diffusion timescale: $t_d = \frac{H_a^2}{D_a \sin^2 I}$
 - Timescale associated with the neutral wind: $t_w = \frac{H_p}{U \sin I \cos I}$

with H_a and H_P are the atmosphere and plasma scale heights (typical length scales), I is the magnetic field dip angle (cp w/ horizontal), U is the meridional (N/S) neutral wind speed and D_a is the ion-neutral diffusion coefficient.

Photo-chemistry in an H₂ atmosphere

 $H_2^+ + H_2 → H_3^+ + H_1$ $k_0 = 2.0 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$ $H_3^+ + e^- → neutral products$ $\alpha_0 = 1.73 \times 10^{-6} \times \text{Te}^{-0.5} \text{ cm}^3 \text{ s}^{-1}$ with Te in K.

• Charge exchange reaction $H^+ + H_2(v \ge 4) \rightarrow H_2^+ + H$ (1)

controls the abundance of H_3^+ as it is quickly followed by:

$$H_2^+ + H_2 \rightarrow H_3^+ + H$$

- Reaction rate k₁* = k₁ [H₂(v≥4)]/[H₂]
 - − Large $[H_2(v \ge 4)]$ → large k_1^* → more H⁺ converted in H_3^+ → decrease in ionospheric densities

▶ k₁ = 10⁻⁹ cm³ s⁻¹ [Huestis, 2008]

The ionosphere of Saturn

From Cassini/Radio Science Subsystem (RSS) data

Why is there a minimum in TEC at low latitudes?...

Photochemistry in Gas Giant atmospheres

 $H^+ + H_2O \rightarrow H_2O^+ + H$ k₂ = 8.2 x 10⁻⁹ cm³ s⁻¹

 $H_2O^+ + H_2 \rightarrow H_3O^+ + H_3$ $k_3 = 7.6 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$

 $H_{3}^{+} + H_{2}O \rightarrow H_{3}O^{+} + H_{2}$ k₄ = 5.3 x 10⁻⁹ cm³ s⁻¹

H₃O⁺+e- \rightarrow neutral products $\alpha_5 = 1.74 \times 10^{-5} \times \text{Te}^{-0.5} \text{ cm}^3 \text{ s}^{-1}$ with Te in K.

Ring rain at Saturn From the rings: H₂O⁺ React with $H_2 \dots \rightarrow H_3O^+$ $H_3O^+ + e^- \rightarrow H_2O \text{ or OH}$ $OH + H_2 \rightarrow H_2O + H$ $H_3^+ + H_2O \rightarrow H_3O^+ + H_2$ Equatorial magnetic mapping (R_s) 3.95 2.1 1.62-1.52 1.29 1 20 1.52-1.62 2.1 3.95 $3.953\,\mu{ m m}$ Intensity of H_3^+ emission (nW m⁻²) NeariR spectrom. Keck II telescope 15 Cassini division 3.622 µm Instability region 10 Colombo gap 64 53 35 28 36-39 48 62 45-42

Northern hemisphere Planetocentric latitude (deg) Southern hemisphere O'Donoghue et al. (Nature, 2013)
Measured ionospheric profiles at Jupiter and Saturn

Vertical structure of the ionosphere

* Cassini/Radio Science Subsystem

* Saturn Thermosphere-Ionosphere Model – General Circulation Model

Effect of atmospheric gravity waves

TAKE HOME MESSAGE: lonosphere

• Ionization sources:

- EUV solar radiation and magnetospheric, energetic particles
- Photo-absorption versus particle deposition:
 - Altitude of absorption of solar radiation driven by:
 - Photo-absorption cross section
 - Column density of absorbers
 - Altitude of deposition of auroral electrons driven by:
 - Column density of atmosphere (primarily)

• Ionospheric composition:

- Dominant ion species photo-produced → usually not most abundant: need to take into account chemistry
- Ionospheric density:
 - Limitation in electron density estimates: H₂ vibrat., ion drift, water inflow
- Vertical/latitudinal structure:
 - Ring contribution to latitudinal and vertical structure
 - Atmospheric gravity wave contribution to vertical structure

SECOND LECTURE

Outline

1. Setting the scene

- Thermosphere/lonosphere
- Energy sources

2. Ionosphere at the giant planets

- What? How? Where? How much?
- 3. Auroral emissions
- 4. Magnetosphere-ionosphere-thermosphere coupling
 - Energy crisis at the giant planets
- 5. Future prospect

Open questions

- What drive ionospheric structure and variability at the giant planets? (see 1st lecture)
- What causes the energy crisis at the giant planets?
- What drive the hemispheric differences observed at Saturn in the magnetosphere and auroral, ionospheric regions?
- Is the variable rotation rate observed in the Saturnian magnetosphere linked to atmospheric dynamics?

Energy crisis at the giant planets

HEATING SOURCES: forcing from above/below

- Solar heating through excitation/dissociation/ionization + exothermic chemical reactions
- Particle heating via collisions + chemistry [e.g., Waite et al. 1983, 1987; Grodent et al., 2001]

"Ionospheric Joule heating" via auroral electrical currents and ion-drag heating [Vasyliũnas and Song, 2005] at high latitudes

Dissipation of upward, propagating waves (such as gravity waves, ...) [Matcheva and Strobel 1999, Hickey et al. 2000; Barrow et al. 2012]

[*: Strobel, 2002]

- Solar EUV/FUV heating*: 0.5 TW (Earth), 0.8 TW (Jupiter), 0.2 TW (Saturn)
- Auroral part./Joule heating*: 0.08 TW (Earth), 100 TW (Jupiter), 5-10 TW (Saturn)

Auroral emissions

Aurora is the photo-manifestation of the interaction of energetic extraatmospheric electrons, ions, and neutrals with an atmosphere.

[Galand and Chakrabarti, 2002]

Protonated molecular hydrogen: H₃⁺

- First time detected in the universe through its IR, thermal emissions
 - Jupiter aurora with Voyager/UVS
 - (Drossart et al. 1989)

- Thermal emissions: tracer of **ionosphere-thermosphere response** to magnetospheric processes
 - ~10 min lifetime
 - Destroyed by hydrocarbons: $H_3^+ + X \rightarrow H_2 + XH^+$
- Importance of H₃⁺ as a coolant (as CO₂ at Earth)
 - \rightarrow Efficient thermostat at Jupiter

 \rightarrow Exoplanet too close, fail to cool, as H₂ dissociated, no H₃⁺ produced.

[Image: J. Connerney, T.Satoh, NASA Infrared Telescope Facility]

Auroral emissions in the Solar System Earth [Planet-facts] Uranus [HST] [Lamy 2012]^{29 Nov. 2011}

Saturn

Aurora: "The TV-screen of the **I-T-M coupling**"

NASA/ESA/John Clarke (Boston University)

UV spectroscopic analysis \rightarrow Particle characteristics IR spectroscopic analysis \rightarrow H₃⁺ density & temperature

ASA/JPL/University of Leicester/University of Arizona

Cassini/VIMS (IR) NASA/JPL/Tom Stallard (Univ. Leicester)/

AURORAL SPECTROSCOPIC ANALYSIS

Identification of energetic particle type
 Assessment of (E_m, Q_{prec}) of energetic particles
 Supported by comprehensive modeling

N₂ LBHS

N₂ LBHL

COLOR RATIO	Earth	Jupiter, Saturn
Two spectral bands chosen in:	N ₂ LBH	H ₂ Lyman and Werner
One band strongly absorbed by:	O ₂ (< 160 nm)	CH ₄ (< 140 nm)
Electron energy range covered	0.2 – 20 keV	~10 to 200 keV
Type of aurora identified:	Electron aurora (discrete only)	Electron aurora (diffuse + discrete)

 ✓ Similar techniques can be applied at various planets BUT different limitations on the product

[Fox et al. 2008]

Side View

[Bagenal 2007]

hydrocarbons below homopause)

Main oval: Spatial distribution and temporal behavior of UV and IR emissions differ \rightarrow IR emissions above homopause **All** \rightarrow IR emissions influenced by H₃⁺ heating + time-delays.

Thermosphere-ionosphere-magnetosphere coupling

MAGNETOSPHERE-IONOSPHERE-THERMOSPHERE COUPLING

• Ion outflow, particle precipitation

THERMOSPHERE-IONOSPHERE-MAGNETOSPHERE COUPLING

• Overall, at high latitudes:

the magnetosphere extracts angular momentum from the upper atmosphere through the magnetic field-aligned currents

Electrical, ionospheric conductivities

$$\begin{array}{l} \begin{array}{l} \textit{Pedersen}\left(\sigma_{P}\right) \\ \textit{\& Hall}\left(\sigma_{H}\right) \\ \textit{conductivities:} \end{array} \quad \sigma_{P}\left(z\right) = \sum_{n} \sum_{i} \frac{n_{i}e}{B} \left(\frac{v_{en\perp}\omega_{e}}{v_{en\perp}^{2} + \omega_{e}^{2}} + \frac{v_{in}\omega_{i}}{v_{in}^{2} + \omega_{i}^{2}}\right) \\ \textit{conductivities:} \end{array}$$

$$\begin{array}{l} \textit{with} \quad \omega = \frac{eB}{m} \quad \sigma_{H}(z) = \sum_{n} \sum_{i} \frac{n_{i}e}{B} \left(\frac{\omega_{e}^{2}}{v_{en\perp}^{2} + \omega_{e}^{2}} - \frac{\omega_{i}^{2}}{v_{in}^{2} + \omega_{i}^{2}}\right) \end{array}$$

Pedersen (Σ_P) & Hall (Σ_H) conductances:

$$\Sigma_P = \int \sigma_P(z) dz$$

ionosphere

$$\Sigma_H = \int \sigma_H(z) dz$$

Indices: e (electrons), i (ions), n (neutrals) *Variables*:

- n, number density
- ω , gyro-frequency (= e B / m)
- V_{in} , ion-neutral collision frequency
- $V_{en\perp}$, effective electron-neutral collision frequency perpendicular to <u>B</u>
- <u>B</u>, magnetic field

Ionospheric Conductances in auroral regions

Ionospheric contribution to neutral temperature

* Melin et al. (2007) ** Vervack and Moses (2009)

Auroral Joule heating sufficient to heat the high latitude ionosphere

[Müller-Wodarg et al. 2012]

Polar sub-corotation due to auroral forcing (westward ion velocities due to ambient E fields) drives equator-to-pole circulation

Temporal change in auroral forcing

"Magnetic storm" response at Jupiter and Saturn remains largely confined to auroral regions

 no propagating gravity wave towards equator (as on Earth)

[Müller-Wodarg et al. 2013, Yates et al. 2013]

Energy trapped in high latitude regions → Would shorter timescales be more efficient?

Future prospect

JUNO observations through the magnetic field lines connected to the auroral ionosphere, close/within the acceleration region (expected to be 2-3 RJ from center [e.g., *Ray et al., 2009*]):

- Electric currents along magnetic field lines
- Plasma/radio waves revealing processing responsible for particle acceleration
- Energetic particles precipitating into atmosphere creating aurora
- Ultraviolet/IR auroral emissions regarding the morphology of the aurora

TAKE HOME MESSAGE

• ANALYSIS OF AURORAL EMISSIONS:

- Valuable probe of ionosphere (IR), auroral particle source, ITM coupling, and magnetic field line configuration
- Jupiter: main oval driven by breaking down from co-rotation (Io)
- Saturn: main oval mapped in the outer magnetosphere varying with solar wind conditions (Enceladus)
- Uranus: solar wind dominated

• T-I-M COUPLING:

- Electrical, ionospheric conductances:
 - Uncertainties in conductivities driven by limitation in electron density estimate
 - Differences in B field strength between Jupiter and Saturn yield differences in conductances. Larger energy fluxes at Jupiter do not seem to compensate for the strong B field. Implication on T-I-M coupling.

- Simulations:

- Critical to estimate the upper atmosphere response self-consistently
- Play a key role in efforts to understand underlying physics
- Energy crisis remains unsolved:
 - Investigate shorter timescale, E field variability unconstrained, role of waves, mid-lat e-?
- Lessons learned from Saturn very useful for upcoming exploration of Jupiter (Juno / JUICE) and exoplanets (EChO)

COMPARATIVE CROSS BODY APPROACH

✓ **Diversity** among solar system bodies in terms of:

physical, magnetic field, atmospheric, energy forcing settings
 makes comparative aeronomy an exciting and enriching field of research

 ✓ Comparative aeronomy challenges our understanding of atmospheric processes, coupling with neighboring regions, and planet evolution, as well as open new doors for extrapolating beyond our Solar System.

Earth

[Credit: D. Hardy, astroart.org/ STFC