Magnetic Energy Conversion Processes in the Sun & Planets

Comparison of Plasma Environments

Parameter	Terrestrial Plasma Sheet	Solar Active Region	
L	10^7 m	10^8 m	
n	10^5 m ⁻³	10^{15} m ⁻³	
B	10^{-8} Tesla	10^{-2} Tesla	
ion-gyro radius / L	10^{-2}	10^{-9}	
ion-inertial length /L	10^{-1}	10^{-7}	
collisional mfp / L	10^{9}	10^{-4}	
VA B /EDreicer	10^{11}	10^{7}	

Evolutionary Phases for CMEs

Energy Storage

CME/Flare Energetics

kinetic energy of mass motions: $\approx 10^{32}$ ergs heating / radiation: $\approx 10^{32}$ ergs

work done against gravity $\approx 10^{31}$ ergs

volume involved: $> (10^5 \text{ km})^3$

energy density: $< 100 \text{ ergs/cm}^3$

Туре	Observed Values	Energy Density
kinetic $(m_p n V^2)/2$	$n = 10^9 \text{ cm}^{-3}$ V = 1 km/s	10 ⁻⁵ ergs/cm ³
thermal <i>nkT</i>	$T = 10^{6} \mathrm{K}$	0.1 ergs/cm ³
gravitational m _p ngh	$h = 10^5 \mathrm{km}$	0.5 ergs/cm ³
magnetic B ² /8π	B = 100 G	400 ergs/cm ³

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

How Much Energy is Stored?

$H\alpha$ image

model with magnetogram

from Gaizauskas & Mackay (1997)

free magnetic energy $\approx 50\%$ of total magnetic energy

Aly - Sturrock Paradox

Flux Injection Models (e.g. Chen 1989) after onset area of circuit increases before onset photosphere surface flows generator

During injection energy flows through photosphere.

> 10 km/sec for > 10 minutes

Injection models predict large surface flows which are never observed.

Substorm Energy Storage

solar wind kinetic energy converted to magnetic energy

Evolutionary Phases for Substorm Plasmoid

Commencement of Substorm Growth Phase

- AE: Auroral Electroject Index
- B_z : North-South Magnetic Field Component

Foster et al. 1971

2D Asymmetric Quadrupole Model

NEF

test of "tether-cutting" concept

Table1.			
Emerging Flux	Does the Filament Erupt		
Near Filament?	Yes	No	
Yes	17	5	
No	5	26	

	Table2.		
	Favorable for	Unfavorable for	Neither
	Reconnection	Reconnection	
Filament Erupted	17	2	2
Filament Did Not Erupt	0	3	3

Trigger Mechanism

Magnetic Energy Conversion:

Generalized Ohm's Law

resistivity

Origin of Non-Idealness

Comparison of non-ideal terms in Generalized Ohm's Law

Required Length	Solar	Terrestrial		
to be Effective	Corona	Magnetosphere		
inertia (λ_e)	10 ^{cel} 1	meters	104	meters
Hall (λ_i)	10 ¹		10 ⁶	
e stress	10 ⁰³		10 ⁵	
collision	10 ⁰⁰⁷		10 ⁰⁶⁷	

Loss of Equilibrium Model

x

Energy Release in 2D Model

QuickTime™ and a Animation decompressor are needed to see this picture.

CME Energy Release versus Flare Energy Release

Numerical Simulation of Critical Point Configuration

Basic Principles I

Basic Principles II

Flux Conservation:

$$I \propto 1/[R \ln(R/r_0)]$$

How to Achieve Equilibrium

However, such an equilibrium is unstable!

How to Achieve a Stable Equilibrium

SAIC CME Simulation

QuickTime™ and a Graphics decompressor are needed to see this picture.

Linker et al. (2001)

IMF Trigger of Substorm

Substorm starts with and without IMF trigger

Triggered onset: 60% Non-triggered onset 40%

Epoch Time (min)

3D Line-Tied Solution by Method of Images

Line-Tied Evolution

Flux-Rope Footprint

images courtesy of B. Kliem

Transient Coronal Holes as Seen by TRACE

QuickTime™ and a Photo decompressor are needed to see this picture.

Transient Coronal Holes as Seen by EIT

holes

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

Transient Coronal Holes as Seen by EIT

QuickTime[™] and a GIF decompres*s*or are needed to see this picture.

Transient Coronal Holes as Seen by EIT

QuickTime™ and a PNG decompressor are needed to see this picture.

Forces Acting on Flux Rope

current density

QuickTime™ and a GIF decompressor are needed to see this picture. QuickTime™ and a Photo decompressor are needed to see this picture.

Kliem & Török (2004)

Simulation of Kliem & Török

QuickTime™ and a GIF decompressor are needed to see this picture.

1. line current replaced by quadrupole

- 2. subcritical twist for helical kink
- 3. torus center near surface

What is the Trigger Mechanism in the Breakout Model?

Role of Reconnection in the Breakout Model

QuickTime™ and a decompressor are needed to see this picture. QuickTime™ and a BMP decompressor are needed to see this picture.

Flux Rope Emergence & Eruption

QuickTime™ and a BMP decompressor are needed to see this picture.

QuickTime™ and a GIF decompressor are needed to see this picture.

3D simulations of Fan & Gibson (2006)

Flux Ropes Are Characteristic of Low β Plasmas

van Ballegooijen & Mackay 2007

prominence plasma $\beta << 1$

 $\nabla P \approx 0 : \mathbf{j} \times \mathbf{B} \approx 0 \qquad \mathbf{j} \parallel \mathbf{B}$

j along B produces twist

flux rope defined as enough twist to produce inverse polarity

(about 1 turn)

blue: flux ropes

red: flux ropes that erupted

Yeates & Mackay 2009

Reconnection Electric Fields

newly reclosed flux:

$$\Phi_B = \iint_{\sigma} B_z \, dx \, dy$$

global reconnection rate:

$$\mathbf{E} \cdot \mathbf{d} \mathbf{l} = \frac{d\Phi_b}{dt}$$

QuickTime™ and a TIFF (Uncompressed) decompressor are needed to see this picture.

CME/Flare Reconnection Rate

Observed Reconnection Rate for X3 Flare

collisionless processes involved

Substorm Reconnection Rate

2D Numerical Simulation of Flare Reconnection

MHD Simuation of Line-Tied Current Sheet

QuickTime™ and a decompressor are needed to see this picture.

Shen et al. 2008

Aurora and Bursty Bulk Flows

Isolated flow bursts with > 2 mV/m (Geotail) correspond to auroral activations

Auroral activations near foot point of satellite start within 1 min of flow burst onset.

Evidence of Bursty Reconnection in CMEs/Flares

QuickTime™ and a Photo decompressor are needed to see this picture.

- High speed (400 km/s) downflows observed above flare loops.
- Multiple island-like structures ("tadpoles" / SADs).

2D MHD Simulation of Late Phase Reconnection

Mei et al. 2012

Tracking of Small Features in Current Sheet

0 XRT 080409 9-Apr-2008 08:01:24.226

Propagation of XRT Features into LASCO Field of View

Energy Phases

1. Growth Phase

magnetospheric: creation of tail current sheet, well understood
solar: force-free currents, subsurface, poorly understood

2. Onset Mechanism

magnetospheric: kinetic versus ideal-MHD process
solar: kinetic versus ideal-MHD process, hybrid process

3. Energy Release

magnetospheric: current sheet dynamics, ionosphere

solar: current sheet dynamics, thermal conduction, radiation