Creation and destruction of magnetic fields

Matthias Rempel

HAO/NCAR

July 20 2011

Magnetic fields in the Universe

- Earth
 - Magnetic field present for $\sim 3.5\cdot 10^9$ years, much longer than Ohmic decay time ($\sim 10^4$ years)
 - Strong variability on shorter time scales (10³ years)
- Mercury, Ganymede, (Io), Jupiter, Saturn, Uranus, Neptune have large scale fields
- Sun
 - Magnetic fields from smallest observable scales to size of sun
 - 11 year cycle of large scale field (Movie)
 - ullet Ohmic decay time $\sim 10^9$ years (in absence of turbulence)
- Other stars
 - Stars with outer convection zone: similar to sun
 - Stars with outer radiation zone: most likely primordial fields
- Galaxies
 - Field structure coupled to observed matter distribution (e.g. spirals)
 - Only dynamo that is directly observable

Scope of this lecture

- Processes of magnetic field generation and destruction in turbulent plasma flows
- Introduction to general concepts of dynamo theory (this is not a lecture about the solar dynamo!)
- Outline
 - MHD, induction equation
 - Some general remarks and definitions regarding dynamos
 - Large scale dynamos (mean field theory)
 - Kinematic theory
 - Characterization of possible dynamos
 - Non-kinematic effects
 - 3D simulations

MHD equations

The full set of MHD equations combines the induction equation with the Navier-Stokes equations including the Lorentz-force:

$$\begin{array}{ll} \frac{\partial \varrho}{\partial t} & = & -\nabla \cdot (\varrho \mathbf{v}) \\ \varrho \frac{\partial \mathbf{v}}{\partial t} & = & -\varrho (\mathbf{v} \cdot \nabla) \mathbf{v} - \nabla \rho + \varrho \mathbf{g} + \frac{1}{\mu_0} (\nabla \times \mathbf{B}) \times \mathbf{B} + \nabla \cdot \tau \\ \varrho \frac{\partial e}{\partial t} & = & -\varrho (\mathbf{v} \cdot \nabla) e - \rho \nabla \cdot \mathbf{v} + \nabla \cdot (\kappa \nabla T) + Q_{\nu} + Q_{\eta} \\ \frac{\partial \mathbf{B}}{\partial t} & = & \nabla \times (\mathbf{v} \times \mathbf{B} - \eta \nabla \times \mathbf{B}) \end{array}$$

Assumptions:

- Validity of continuum approximation (enough particles to define averages)
- Non-relativistic motions, low frequencies
- Strong collisional coupling: validity of single fluid approximations, isotropic (scalar) gas pressure

MHD equations

Viscous stress tensor au

$$\begin{array}{lcl} \boldsymbol{\Lambda}_{ik} & = & \frac{1}{2} \left(\frac{\partial \boldsymbol{v}_i}{\partial \boldsymbol{x}_k} + \frac{\partial \boldsymbol{v}_k}{\partial \boldsymbol{x}_i} \right) \\ \\ \boldsymbol{\tau}_{ik} & = & 2\varrho\nu \left(\boldsymbol{\Lambda}_{ik} - \frac{1}{3} \delta_{ik} \boldsymbol{\nabla} \cdot \boldsymbol{\mathbf{v}} \right) \\ \boldsymbol{Q}_{\nu} & = & \tau_{ik} \boldsymbol{\Lambda}_{ik} \; , \end{array}$$

Ohmic dissipation Q_{η}

$$Q_{\eta} = rac{\eta}{\mu_0} (oldsymbol{
abla} imes oldsymbol{B})^2 \ .$$

Equation of state

$$p=\frac{\varrho\,e}{\gamma-1}\;.$$

u, η and κ : viscosity, magnetic diffusivity and thermal conductivity μ_0 denotes the permeability of vacuum

Kinematic approach

- Solving the 3D MHD equations is not always feasible
- Semi-analytical approach preferred for understanding fundamental properties of dynamos
- Evaluate turbulent induction effects based on induction equation for a given velocity field
 - Velocity field assumed to be given as 'background' turbulence, Lorentz-force feedback neglected (sufficiently weak magnetic field)
 - What correlations of a turbulent velocity field are required for dynamo (large scale) action?
 - Theory of onset of dynamo action, but not for non-linear saturation
- More detailed discussion of induction equation

Ohm's law

Equation of motion for drift velocity \mathbf{v}_d of electrons

$$n_e m_e \left(\frac{\partial v_d}{\partial t} + \frac{v_d}{\tau_{ei}} \right) = n_e q_e (\mathbf{E} + \mathbf{v}_d \times \mathbf{B}) - \mathbf{\nabla} p_e$$

 au_{ei} : collision time between electrons and ions

n_e: electron density

 q_e : electron charge

 m_e : electron mass

p_e: electron pressure

With the electric current: $\mathbf{j} = n_e q_e \mathbf{v}_d$ this gives the generalized Ohm's law:

$$\frac{\partial \mathbf{j}}{\partial t} + \frac{\mathbf{j}}{\tau_{ei}} = \frac{n_e q_e^2}{m_e} \mathbf{E} + \frac{q_e}{m_e} \mathbf{j} \times \mathbf{B} - \frac{q_e}{m_e} \mathbf{\nabla} p_e$$

Simplifications:

- $\tau_{ei} \omega_I \ll 1$, $\omega_I = eB/m_e$: Larmor frequency
- neglect ∇p_e
- low frequencies (no plasma oscillations)

Ohm's law

Simplified Ohm's law

$$\mathbf{j} = \sigma \mathbf{E}$$

with the plasma conductivity

$$\sigma = \frac{\tau_{ei} n_e q_e^2}{m_e}$$

The Ohm's law we derived so far is only valid in the co-moving frame of the plasma. Under the assumption of non-relativistic motions this transforms in the laboratory frame to

$$\mathbf{j} = \sigma \left(\mathbf{E} + \mathbf{v} \times \mathbf{B} \right)$$

Induction equation*

Using Ampere's law $\nabla \times \mathbf{B} = \mu_0 \mathbf{j}$ yields for the electric field in the laboratory frame

$$\mathbf{E} = -\mathbf{v} imes \mathbf{B} + rac{1}{\mu_0 \sigma} \mathbf{\nabla} imes \mathbf{B}$$

leading to the induction equation

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} = \nabla \times (\mathbf{v} \times \mathbf{B} - \eta \nabla \times \mathbf{B})$$

with the magnetic diffusivity

$$\eta = \frac{1}{\mu_0 \sigma} \ .$$

Advection, diffusion, magnetic Reynolds number

L: typical length scale U: typical velocity scale L/U: time unit

$$\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times \left(\mathbf{v} \times \mathbf{B} - \frac{1}{R_m} \mathbf{\nabla} \times \mathbf{B} \right)$$

with the magnetic Reynolds number

$$R_m = \frac{UL}{\eta} .$$

 $R_m \ll 1$: diffusion dominated regime

$$\frac{\partial \mathbf{B}}{\partial t} = \eta \Delta \mathbf{B} \ .$$

Only decaying solutions with decay (diffusion) time scale

$$\tau_{\rm d} \sim \frac{L^2}{\eta}$$

Advection, diffusion, magnetic Reynolds number

 $R_m \gg 1$ advection dominated regime (ideal MHD)

$$\frac{\partial \mathbf{B}}{\partial t} = \mathbf{\nabla} \times (\mathbf{v} \times \mathbf{B})$$

Equivalent expression

$$\frac{\partial \mathbf{B}}{\partial t} = -(\mathbf{v} \cdot \nabla)\mathbf{B} + (\mathbf{B} \cdot \nabla)\mathbf{v} - \mathbf{B} \nabla \cdot \mathbf{v}$$

- advection of magnetic field
- amplification by shear (stretching of field lines)
- amplification through compression

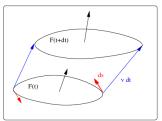
Advection, diffusion, magnetic Reynolds number

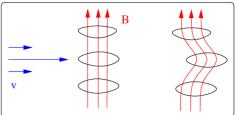
Object	$\eta [\mathrm{m^2/s}]$	L[m]	$U[\mathrm{m/s}]$	R_m	$ au_{ m d}$
earth (outer core)	2	10^{6}	10^{-3}	300	$10^4\mathrm{years}$
sun (plasma conductivity)	1	10^{8}	100	10^{10}	$10^9\mathrm{years}$
sun (turbulent conductivity)	10 ⁸	10^{8}	100	100	$3\mathrm{years}$
liquid sodium lab experiment	0.1	1	10	100	$10\mathrm{s}$

Alfven's theorem

Let Φ be the magnetic flux through a surface F with the property that its boundary ∂F is moving with the fluid:

$$\Phi = \int_{F} \mathbf{B} \cdot d\mathbf{f} \longrightarrow \frac{d\Phi}{dt} = 0$$





- Flux is 'frozen' into the fluid
- Field lines 'move' with plasma

Dynamos: Motivation

- For ${f v}=0$ magnetic field decays on timescale $au_d\sim L^2/\eta$
- Earth and other planets:
 - Evidence for magnetic field on earth for 3.5 \cdot 10 9 years while $au_d \sim 10^4$ years
 - ullet Permanent rock magnetism not possible since $T>T_{\mathrm{Curie}}$ and field highly variable \longrightarrow field must be maintained by active process
- Sun and other stars:
 - ullet Evidence for solar magnetic field for $\sim 300\,000$ years ($^{10}\mbox{Be}$)
 - Most solar-like stars show magnetic activity independent of age
 - Indirect evidence for stellar magnetic fields over life time of stars
 - But $au_d \sim 10^9$ years!
 - Primordial field could have survived in radiative interior of sun, but convection zone has much shorter diffusion time scale ~ 10 years (turbulent diffusivity)

Mathematical definition of dynamo

S bounded volume with the surface ∂S , \mathbf{B} maintained by currents contained within S, $B \sim r^{-3}$ asymptotically,

$$\frac{\partial \mathbf{B}}{\partial t} = \nabla \times (\mathbf{v} \times \mathbf{B} - \eta \nabla \times \mathbf{B}) \quad \text{in } S$$

$$\nabla \times \mathbf{B} = 0 \quad \text{outside } S$$

$$[\mathbf{B}] = 0 \quad \text{across } \partial S$$

$$\nabla \cdot \mathbf{B} = 0$$

 $\mathbf{v} = 0$ outside S, $\mathbf{n} \cdot \mathbf{v} = 0$ on ∂S and

$$E_{\rm kin} = \int_{\mathcal{S}} \frac{1}{2} \varrho \mathbf{v}^2 \, dV \le E_{
m max} \quad \forall \ t$$

 ${f v}$ is a dynamo if an initial condition ${f B}={f B}_0$ exists so that

$$E_{\mathrm{mag}} = \int_{-\infty}^{\infty} \frac{1}{2\mu_0} \mathbf{B}^2 \, dV \ge E_{\mathrm{min}} \quad \forall \ t$$

Large scale/small scale dynamos

Decompose the magnetic field into large scale part and small scale part (energy carrying scale of turbulence) $\mathbf{B} = \overline{\mathbf{B}} + \mathbf{B}'$:

$$E_{\rm mag} = \int \frac{1}{2\mu_0} \overline{\boldsymbol{B}}^2 \, dV + \int \frac{1}{2\mu_0} \overline{\boldsymbol{B'}^2} \, dV \; .$$

- Small scale dynamo: $\overline{\mathbf{B}}^2 \ll \overline{\mathbf{B'}^2}$
- Large scale dynamo: $\overline{\mathbf{B}}^2 \ge \overline{\mathbf{B}'^2}$

Almost all turbulent (chaotic) velocity fields are small scale dynamos for sufficiently large R_m , large scale dynamos require additional large scale symmetries (see second half of this lecture)

What means large/small in practice (Sun)?

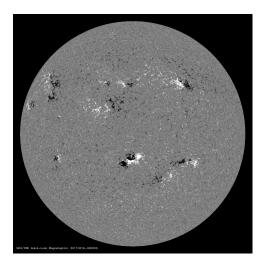


Figure: Full disk magnetogram SDO/HMI

What means large/small in practice (Sun)?

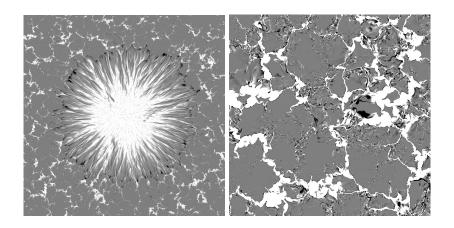
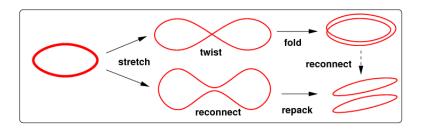


Figure: Numerical sunspot simulation. Dimensions: Left 50x50 Mm,

Right: 12.5x12.5 Mm

Large scale/small scale dynamos



- Amplification through field line stretching
- Twist-fold required to repack field into original volume
- Magnetic diffusivity allows for change of topology

Slow/fast dynamos

Influence of magnetic diffusivity on growth rate

- Fast dynamo: growth rate independent of R_m (stretch-twist-fold mechanism)
- Slow dynamo: growth rate limited by resistivity (stretch-reconnect-repack)
- Fast dynamos relevant for most astrophysical objects since $R_m\gg 1$
- Dynamos including (resistive) reconnection steps can be fast provided the reconnection is fast

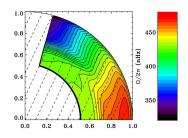
Differential rotation and meridional flow

Induction effects of axisymmetric flows on axisymmetric field:

$$\mathbf{B} = B\mathbf{e}_{\mathbf{\Phi}} + \mathbf{\nabla} \times (A\mathbf{e}_{\mathbf{\Phi}})$$

$$\mathbf{v} = v_r \mathbf{e}_r + v_{\theta} \mathbf{e}_{\theta} + \Omega r \sin \theta \mathbf{e}_{\mathbf{\Phi}}$$

Differential rotation most dominant shear flow in stellar convection zones:



Meridional flow by-product of DR, observed as poleward surface flow in case of the sun

Differential rotation and meridional flow

Spherical geometry:

$$\begin{split} \frac{\partial B}{\partial t} &+ \frac{1}{r} \left(\frac{\partial}{\partial r} (r v_r B) + \frac{\partial}{\partial \theta} (v_\theta B) \right) = \\ & r \sin B_\rho \cdot \nabla \Omega + \eta \left(\Delta - \frac{1}{(r \sin \theta)^2} \right) B \\ \frac{\partial A}{\partial t} &+ \frac{1}{r \sin \theta} \mathbf{v}_\rho \cdot \nabla (r \sin \theta A) = \eta \left(\Delta - \frac{1}{(r \sin \theta)^2} \right) A \end{split}$$

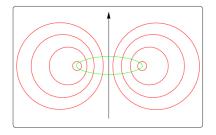
- Meridional flow: Independent advection of poloidal and toroidal field
- Differential rotation: Source for toroidal field (if poloidal field not zero)
- Diffusion: Sink for poloidal and toroidal field
- No term capable of maintaining poloidal field against Ohmic decay!

Differential rotation and meridional flow

- Weak poloidal seed field can lead to significant field amplification
- No source term for poloidal field
- Decay of poloidal field on resistive time scale
- Ultimate decay of toroidal field
- Not a dynamo!
- What is needed?
- Source for poloidal field

Cowling's anti-dynamo theorem

A stationary axisymmetric magnetic field with currents limited to a finite volume in space cannot be maintained by a velocity field with finite amplitude.



Ohm's law of the form $\mathbf{j} = \sigma \mathbf{E}$ only decaying solutions, focus here on $\mathbf{j} = \sigma(\mathbf{v} \times \mathbf{B})$.

On O-type neutral line \mathbf{B}_p is zero, but $\mu_0 \mathbf{j}_t = \nabla \times \mathbf{B}_p$ has finite value, but cannot be maintained by $(\mathbf{v} \times \mathbf{B})_t = (\mathbf{v}_p \times \mathbf{B}_p)$.

Large scale dynamo theory

Some history:

- 1919 Sir Joeseph Larmor: Solar magnetic field maintained by motions of conducting fluid?
- 1937 Cowling's anti-dynamo theorem and many others
- 1955 Parker: decomposition of field in axisymmetric and non-axisymmetric parts, average over induction effects of non-axisymmetric field
- 1964 Braginskii, Steenbeck, Krause: Mathematical frame work of mean field theory developed
- last 2 decades 3D dynamo simulations

Reynolds rules

We need to define an averaging procedure to define the mean and the fluctuating field.

For any function f and g decomposed as $f=\overline{f}+f'$ and $g=\overline{g}+g'$ we require that the Reynolds rules apply

$$\overline{f} = \overline{f} \longrightarrow \overline{f'} = 0$$

$$\overline{f+g} = \overline{f} + \overline{g}$$

$$\overline{f}\overline{g} = \overline{f}\overline{g} \longrightarrow \overline{f'}\overline{g} = 0$$

$$\overline{\partial f/\partial x_i} = \partial \overline{f}/\partial x_i$$

$$\overline{\partial f/\partial t} = \partial \overline{f}/\partial t.$$

Examples:

- Longitudinal average (mean = axisymmetric component)
- Ensemble average (mean = average over several realizations of chaotic system)

Meanfield induction equation

Average of induction equation:

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \mathbf{\nabla} \times \left(\overline{\mathbf{v}' \times \mathbf{B}'} + \overline{\mathbf{v}} \times \overline{\mathbf{B}} - \eta \mathbf{\nabla} \times \overline{\mathbf{B}} \right)$$

New term resulting from small scale effects:

$$\overline{\boldsymbol{\mathcal{E}}} = \overline{\boldsymbol{v}' \times \boldsymbol{B}'}$$

Fluctuating part of induction equation:

$$\left(\frac{\partial}{\partial t} - \eta \Delta\right) \mathbf{B}' - \nabla \times (\overline{\mathbf{v}} \times \mathbf{B}') = \nabla \times \left(\mathbf{v}' \times \overline{\mathbf{B}} + \mathbf{v}' \times \mathbf{B}' - \overline{\mathbf{v}' \times \mathbf{B}'}\right)$$

Kinematic approach: \mathbf{v}' assumed to be given

- Solve for ${\bf B}'$, compute ${\overline {{f v}'} imes {f B}'}$ and solve for ${\overline {f B}}$
- Term $\mathbf{v}' \times \mathbf{B}' \mathbf{v}' \times \mathbf{B}'$ leading to higher order correlations (closure problem)

Mean field expansion of turbulent induction effects

Exact expressions for $\overline{\mathcal{E}}$ exist only under strong simplifying assumptions (see homework assignment).

In general $\overline{\mathcal{E}}$ is a linear functional of $\overline{\mathbf{B}}$:

$$\overline{\mathcal{E}}_i(\mathbf{x},t) = \int_{-\infty}^{\infty} d^3x' \int_{-\infty}^t dt' \, \mathcal{K}_{ij}(\mathbf{x},t,\mathbf{x}',t') \, \overline{B}_j(\mathbf{x}',t') \; .$$

Can be simplified if a sufficient scale separation is present:

- $I_c \ll L$
- $\tau_c \ll \tau_L$

Leading terms of expansion:

$$\overline{\mathcal{E}}_i = a_{ij}\overline{B}_j + b_{ijk}\frac{\partial \overline{B}_j}{\partial x_k}$$

In stellar convection zones scale separation also only marginally justified (continuous turbulence spectrum)!

Decomposing a_{ij} and $\partial \overline{B}_j/\partial x_k$ into symmetric and antisymmetric components:

$$a_{ij} = \underbrace{\frac{1}{2} (a_{ij} + a_{ji})}_{\alpha_{ij}} + \underbrace{\frac{1}{2} (a_{ij} - a_{ji})}_{-\varepsilon_{ijk}\gamma_{k}}$$

$$\frac{\partial \overline{B}_{j}}{\partial x_{k}} = \underbrace{\frac{1}{2} \left(\frac{\partial \overline{B}_{j}}{\partial x_{k}} + \frac{\partial \overline{B}_{k}}{\partial x_{j}} \right)}_{-\frac{1}{2}\varepsilon_{jkl}(\nabla \times \overline{B})_{l}}$$

Leads to:

$$\overline{\mathcal{E}}_{i} = \alpha_{ik}\overline{B}_{k} + \varepsilon_{ijk}\gamma_{j}\overline{B}_{k} - \underbrace{\frac{1}{2}b_{ijk}\varepsilon_{jkl}(\mathbf{\nabla}\times\overline{\mathbf{B}})_{l} + \dots}_{\beta_{il}-\varepsilon_{ilm}\delta_{m}}$$

Overall result:

$$\overline{\mathcal{E}} = lpha \overline{\mathsf{B}} + \gamma imes \overline{\mathsf{B}} - eta \,
abla imes \overline{\mathsf{B}} - \delta imes (oldsymbol{
abla} imes \overline{\mathsf{B}}) + \dots$$

With:

$$\begin{array}{lcl} \alpha_{ij} & = & \frac{1}{2} \left(a_{ij} + a_{ji} \right) \; , & \qquad \gamma_i \; = \; -\frac{1}{2} \varepsilon_{ijk} a_{jk} \\ \beta_{ij} & = & \frac{1}{4} \left(\varepsilon_{ikl} b_{jkl} + \varepsilon_{jkl} b_{ikl} \right) \; , & \qquad \delta_i \; = \; \frac{1}{4} \left(b_{jji} - b_{jij} \right) \end{array}$$

 α , β , γ and δ depend on large scale symmetries of the system defining the symmetry properties of the turbulence (e.g. rotation and stratification). Additional to that the expansion

$$\overline{\mathcal{E}} = \alpha \overline{\mathsf{B}} + \gamma \times \overline{\mathsf{B}} - \beta \nabla \times \overline{\mathsf{B}} - \delta \times \nabla \times \overline{\mathsf{B}} + \dots$$

is a relation between polar and axial vectors:

- $\overline{\mathcal{E}}$: polar vector, independent from handedness of coordinate system
- B: axial vector, involves handedness of coordinate system in definition (curl operator, cross product)

Handedness of coordinate system pure convention (contains no physics), consistency requires:

- α , δ : pseudo tensor
- β , γ : true tensors

Turbulence with rotation and stratification

- true tensors: δ_{ij} , g_i , g_ig_j , $\Omega_i\Omega_j$, $\Omega_i\varepsilon_{ijk}$
- pseudo tensors: ε_{ijk} , Ω_i , $\Omega_i g_j$, $g_i \varepsilon_{ijk}$

Symmetry constraints allow only certain combinations:

$$\alpha_{ij} = \alpha_0(\mathbf{g} \cdot \mathbf{\Omega})\delta_{ij} + \alpha_1(g_i\Omega_j + g_j\Omega_i) , \quad \gamma_i = \gamma_0g_i + \gamma_1\varepsilon_{ijk}g_j\Omega_k$$

$$\beta_{ij} = \beta_0\delta_{ij} + \beta_1g_ig_j + \beta_2\Omega_i\Omega_j , \qquad \delta_i = \delta_0\Omega_i$$

The scalars $\alpha_0 \dots \delta_0$ depend on quantities of the turbulence such as rms velocity and correlation times scale.

- ullet isotropic turbulence: only $oldsymbol{eta}$
- ullet + stratification: $oldsymbol{eta}+oldsymbol{\gamma}$
- ullet + rotation: $oldsymbol{eta}+oldsymbol{\delta}$
- \bullet + stratification + rotation: α can exist

Simplified expressions

Assuming $|\mathbf{B}'| \ll |\overline{\mathbf{B}}|$ in derivation + additional simplification for (quasi) isotropic, non-mirror symmetric, (weakly) inhomogeneous turbulence (see homework assignment):

$$\overline{\mathbf{v_{i'}v_{j'}}} \sim \delta_{ij}, \ \alpha_{ij} = \alpha \delta_{ij}, \ \beta_{ij} = \eta_t \delta_{ij}$$

Leads to:

$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \mathbf{\nabla} \times \left[\alpha \overline{\mathbf{B}} + (\overline{\mathbf{v}} + \gamma) \times \overline{\mathbf{B}} - (\eta + \eta_t) \mathbf{\nabla} \times \overline{\mathbf{B}} \right]$$

with the scalar quantities

$$\alpha = -\frac{1}{3}\tau_c \, \overline{\mathbf{v}' \cdot (\mathbf{\nabla} \times \mathbf{v}')}, \quad \eta_t = \frac{1}{3}\tau_c \, \overline{\mathbf{v}'^2}$$

and vector

$$oldsymbol{\gamma} = -rac{1}{6} au_coldsymbol{
abla}'^2 = -rac{1}{2}oldsymbol{
abla}\eta_t$$

Expressions are independent of η (in this approximation), indicating fast dynamo action!

Turbulent diffusivity - destruction of magnetic field

Turbulent diffusivity dominant dissipation process for large scale field in case of large R_m :

$$\eta_t = rac{1}{3} au_c \, \overline{{f v}'^2} \sim L \, v_{
m rms} \sim R_m \eta \gg \eta$$

- Formally η_t comes from advection term (transport term, non-dissipative)
- Turbulent cascade transporting magnetic energy from the large scale L to the micro scale I_m (advection + reconnection)

$$\eta \mathbf{j}_m^2 \sim \eta_t \overline{\mathbf{j}}^2 \longrightarrow \frac{B_m}{I_m} \sim \sqrt{R_m} \frac{\overline{B}}{L}$$

Important: The large scale determines the energy dissipation rate, *I* adjusts to allow for the dissipation on the microscale.

Present for isotropic homogeneous turbulence

Turbulent diamagnetism, turbulent pumping

Expulsion of flux from regions with larger turbulence intensity 'diamagnetism'

$$oldsymbol{\gamma} = -rac{1}{2}oldsymbol{
abla}\eta_t$$

Turbulent pumping (stratified convection):

$$oldsymbol{\gamma} = -rac{1}{6} au_c oldsymbol{
abla} \overline{oldsymbol{{f v}'}^2}$$

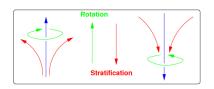
- Upflows expand, downflows converge
- Stronger velocity and smaller filling factor of downflows
- Mean induction effect of up- and downflow regions does not cancel
- Downward transport found in numerical simulations

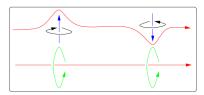
Requires inhomogeneity (stratification)

Kinematic α -effect

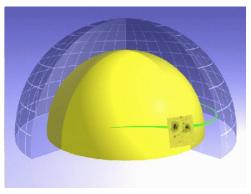
$$\alpha = -\frac{1}{3}\tau_c \, \overline{\mathbf{v}' \cdot (\mathbf{\nabla} \times \mathbf{v}')} \quad H_k = \overline{\mathbf{v}' \cdot (\mathbf{\nabla} \times \mathbf{v}')} \quad \text{kinetic helicity}$$

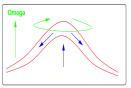
Requires rotation + additional preferred direction (stratification)

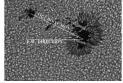




Babcock-Leighton α -effect







- ullet Similar to kinetic lpha-effect, but driven by magnetic buoyancy
- Leading polarities have larger propability to reconnect across equator with counterpart on other hemisphere
- Polarity of hemisphere = polarity of following sunspots

Generalized Ohm's law

What is needed to circumvent Cowling's theorem?

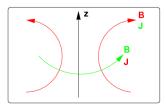
- Crucial for Cowling's theorem: Impossibility to drive a current parallel to magnetic field
- Cowling's theorem does not apply to mean field if a mean current can flow parallel to the mean field (since total field non-axisymmetric this is not a contradiction!)

$$\overline{\mathbf{j}} = \widetilde{\boldsymbol{\sigma}} \left(\overline{E} + \overline{\mathbf{v}} \times \overline{\mathbf{B}} + \boldsymbol{\gamma} \times \overline{\mathbf{B}} + \alpha \overline{\mathbf{B}} \right)$$

 $\tilde{\sigma}$ contains contributions from η , β and δ . Ways to circumvent Cowling:

- α-effect
- anisotropic conductivity (off diagonal elements + δ -effect)

α^2 -dynamo



Induction of field parallel to current (producing helical field!)

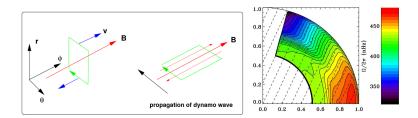
$$\frac{\partial \overline{\mathbf{B}}}{\partial t} = \mathbf{\nabla} \times (\alpha \overline{\mathbf{B}}) = \alpha \mu_0 \overline{\mathbf{j}}$$

Dynamo cycle:

$$\mathbf{B}_t \xrightarrow{\alpha} \mathbf{B}_p \xrightarrow{\alpha} \mathbf{B}_t$$

- Poloidal and toroidal field of similar strength
- In general stationary solutions

$\alpha\Omega$ -, $\alpha^2\Omega$ -dynamo



Dynamo cycle:

$$\mathbf{B}_t \xrightarrow{\alpha} \mathbf{B}_p \xrightarrow{\Omega} \mathbf{B}_t$$

- Toroidal field much stronger that poloidal field
- In general traveling (along lines of constant Ω) and periodic solutions

$\alpha\Omega$ -dynamo

$$\begin{split} \frac{\partial B}{\partial t} &+ \frac{1}{r} \left(\frac{\partial}{\partial r} (r v_r B) + \frac{\partial}{\partial \theta} (v_\theta B) \right) = r \sin \mathbf{B}_\rho \cdot \nabla \Omega \\ &+ \eta \left(\Delta - \frac{1}{(r \sin \theta)^2} \right) B \\ \frac{\partial A}{\partial t} &+ \frac{1}{r \sin \theta} \mathbf{v}_\rho \cdot \nabla (r \sin \theta A) = \alpha B + \eta \left(\Delta - \frac{1}{(r \sin \theta)^2} \right) A \end{split}$$

• Dimensionless measure for strength of Ω - and α -effect

$$D_{\Omega} = \frac{R^2 \Delta \Omega}{\eta_t} \qquad D_{\alpha} = \frac{R \alpha}{\eta_t}$$

• Dynamo excited if dynamo number

$$D=D_{\Omega}D_{lpha}>D_{crit}$$

$\alpha\Omega$ -dynamo without meridional flow

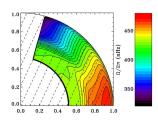
$$\begin{array}{lcl} \frac{\partial B}{\partial t} & = & r \sin \, \mathbf{B}_{p} \cdot \boldsymbol{\nabla} \Omega + \eta \left(\Delta - \frac{1}{(r \sin \theta)^{2}} \right) B \\ \frac{\partial A}{\partial t} & = & \alpha B + \eta \left(\Delta - \frac{1}{(r \sin \theta)^{2}} \right) A \end{array}$$

Cyclic behavior:

$$P \propto (\alpha |\mathbf{\nabla}\Omega|)^{-1/2}$$

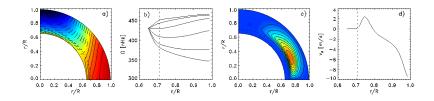
- Propagation of magnetic field along contourlines of Ω "dynamo-wave"
- Direction of propagation "Parker-Yoshimura-Rule":

$$\mathbf{s} = \alpha \mathbf{\nabla} \Omega \times \mathbf{e}_{\phi}$$



Movie: $\alpha\Omega$ -dynamo

$\alpha\Omega$ -dynamo with meridional flow



Meridional flow:

- Poleward at top of convection zone
- Equatorward at bottom of convection zone

Effect of advection:

- Equatorward propagation of activity
- Correct phase relation between poloidal and toroidal field
- Circulation time scale of flow sets dynamo period
- Requirement: Sufficiently low turbulent diffusivity

Movie: Flux-transport-dynamo (M. Dikpati, HAO)

Dynamos and magnetic helicity

Magnetic helicity (integral measure of field topology):

$$H_m = \int \mathbf{A} \cdot \mathbf{B} \, dV$$

has following conservation law (no helicity fluxes across boundaries):

$$\frac{d}{dt} \int \mathbf{A} \cdot \mathbf{B} \, dV = -2\mu_0 \, \eta \int \mathbf{j} \cdot \mathbf{B} \, dV$$

Decomposition into small and large scale part:

$$\frac{d}{dt} \int \overline{\mathbf{A}} \cdot \overline{\mathbf{B}} \, dV = +2 \int \overline{\mathcal{E}} \cdot \overline{\mathbf{B}} \, dV - 2\mu_0 \, \eta \int \overline{\mathbf{j}} \cdot \overline{\mathbf{B}} \, dV$$

$$\frac{d}{dt} \int \overline{\mathbf{A}' \cdot \mathbf{B}'} \, dV = -2 \int \overline{\mathcal{E}} \cdot \overline{\mathbf{B}} \, dV - 2\mu_0 \, \eta \int \overline{\mathbf{j}' \cdot \mathbf{B}'} \, dV$$

Dynamos and magnetic helicity

Dynamos have helical fields:

- ullet lpha-effect induces magnetic helicity of same sign on large scale
- α -effect induces magnetic helicity of opposite sign on small scale

Asymptotic staturation (time scale $\sim R_m \tau_c$):

Time scales:

- ullet Galaxy: $\sim 10^{25}$ years ($R_m \sim 10^{18}$, $au_c \sim 10^7$ years)
- \bullet Sun: $\sim 10^8$ years
- Earth: $\sim 10^6$ years

Non-kinematic effects

Proper way to treat them: 3D simulations

- Still very challenging
- Has been successful for geodynamo, but not for solar dynamo
 Semi-analytical treatment of Lorentz-force feedback in mean field models:
 - Macroscopic feedback: Change of the mean flow (differential rotation, meridional flow) through the mean Lorentz-force

$$\overline{\mathbf{f}} = \overline{\mathbf{j}} \times \overline{\mathbf{B}} + \overline{\mathbf{j}' \times \mathbf{B}'}$$

- Mean field model including mean field representation of full MHD equations:
 - Movie: Non-kinematic flux-transport dynamo
- Microscopic feedback: Change of turbulent induction effects (e.g. α -quenching)

Feedback of Lorentz force on small scale motions:

• Intensity of turbulent motions significantly reduced if $\frac{1}{2\mu_0}B^2>\frac{1}{2}\varrho v_{rms}^2$. Typical expression used

$$\alpha = \frac{\alpha_k}{1 + \frac{\overline{\mathbf{B}}^2}{B_{eq}^2}}$$

with the equipartition field strength $B_{eq} = \sqrt{\mu_0 \varrho} v_{rms}$

- Similar quenching also expected for turbulent diffusivity
- Additional quenching of α due to topological constraints possible (helicity conservation)

 Controversial!

Symmetry of momentum and induction equation $\mathbf{v}' \leftrightarrow \mathbf{B}'/\sqrt{\mu_0\varrho}$:

$$\frac{d\mathbf{v}'}{dt} = \frac{1}{\mu_0 \varrho} (\overline{\mathbf{B}} \cdot \nabla) \mathbf{B}' + \dots
\frac{d\mathbf{B}'}{dt} = (\overline{\mathbf{B}} \cdot \nabla) \mathbf{v}' + \dots
\overline{\mathcal{E}} = \overline{\mathbf{v}' \times \mathbf{B}'}$$

Strongly motivates magnetic term for α -effect (Pouquet et al. 1976):

$$\alpha = \frac{1}{3}\tau_c \left(\frac{1}{\varrho} \, \mathbf{j}' \cdot \mathbf{B}' - \overline{\boldsymbol{\omega}' \cdot \mathbf{v}'} \right)$$

- Kinetic α : $\overline{\mathbf{B}} + \mathbf{v}' \longrightarrow \mathbf{B}' \longrightarrow \overline{\mathcal{E}}$
- Magnetic α : $\overline{\mathbf{B}} + \mathbf{B}' \longrightarrow \mathbf{v}' \longrightarrow \overline{\mathcal{E}}$

From helicity conservation one expects

$$\overline{\mathbf{j}' \cdot \mathbf{B}'} \sim -\alpha \overline{\mathbf{B}}^2$$

leading to algebraic quenching

$$\alpha = \frac{\alpha_k}{1 + g \frac{\overline{\mathbf{B}}^2}{B_{eq}^2}}$$

With the asymptotic expression (steady state)

$$\mathbf{\overline{j'} \cdot B'} = -rac{lpha \overline{\mathbf{B}}^2}{\mu_0 \eta} + rac{\eta_t}{\eta} \overline{\mathbf{j}} \cdot \overline{\mathbf{B}}$$

we get

$$\alpha = \frac{\alpha_{\rm k} + \frac{\eta_{\rm t}^2}{\eta} \frac{\mu_0 \bar{\mathbf{j}} \cdot \bar{\mathbf{B}}}{B_{\rm eq}^2}}{1 + \frac{\eta_{\rm t}}{\eta} \frac{\bar{\mathbf{B}}^2}{B_{\rm eq}^2}}$$

Catastrophic α -quenching ($R_m \gg 1!$) in case of steady state and homogeneous $\overline{\bf B}$:

$$\alpha = \frac{\alpha_{\rm k}}{1 + R_m \frac{\overline{\mathbf{B}}^2}{B_{\rm eq}^2}}$$

If $\overline{\mathbf{j}} \cdot \overline{\mathbf{B}} \neq 0$ (dynamo generated field) and η_t unquenched:

$$\alpha \approx \eta_t \, \mu_0 \frac{\overline{\mathbf{j}} \cdot \overline{\mathbf{B}}}{\overline{\mathbf{B}}^2} \sim \frac{\eta_t}{L} \sim \frac{\eta_t}{l_c} \frac{l_c}{L} \sim \alpha_k \frac{l_c}{L}$$

- In general α -quenching dynamic process: linked to time evolution of helicity
- Boundary conditions matter: Loss of small scale current helicity can alleviate catastrophic quenching
- ullet Catastrophic lpha-quenching turns large scale dynamo into slow dynamo

3D simulations

Why not just solving the full system to account for all non-linear effects?

- Most systems have $R_{\rm e}\gg R_{\rm m}\gg 1$, requiring high resolution
- Large scale dynamos evolve on time scales $\tau_c \ll t \ll \tau_\eta$, requiring long runs compared to convective turn over
- 3D simulations successful for geodynamo
 - $R_m \sim 300$: all relevant magnetic scales resolvable
 - Incompressible system
- Solar dynamo: Ingredients can be simulated
 - Compressible system: density changes by 10⁶ through convection zone
 - Boundary layer effects: Tachocline, difficult to simulate (strongly subadiabatic stratification, large time scales)
 - Magnetic structures down to 1000 km most likely important Evolve 5000^3 box over $1000 \tau_c!$
 - Small scale dynamos can be simulated (for $P_m \sim 1$)

Summarizing remarks

Destruction of magnetic field:

- Turbulent diffusivity: cascade of magnetic energy from large scale to dissipation scale (advection+reconnection)
- ullet Enhances dissipation of large field by a factor R_m

Creation of magnetic field:

- Small scale dynamo (non-helical)
 - Amplification of field at and below energy carrying scale of turbulence
 - Stretch-twist-fold-(reconnect)
 - Produces non-helical field and does not require helical motions
 - Current research: behavior for $P_m \ll 1$
- Large scale dynamo (helical)
 - Amplification of field on scales larger than scale of turbulence
 - Produces helical field and does require helical motions
 - Requires rotation + additional symmetry direction (controversial $\Omega \times J$ effect does not require helical motions)
 - Current research: catastrophic vs. non-catastrophic quenching

