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1 Introduction

1.1 The Inner Turmoil of Stars

It’s not easy being a star. Whether you’re a Hollywood celebrity or a luminescent sphere
of plasma, you face some extraordinary challenges. In order to shine in the latter case, you
must find a way to to transport energy from your core where it is liberated by thermonuclear
fusion to your surface where it can be radiated into space.

In the core of the Sun, the outward diffusion of photons provides a sufficient means of
energy transport. However, in the relatively cool solar envelope the plasma is more opaque,
forming a bottleneck to radiative heat transport. Thermal gradients build up until the star’s
only recourse is to bodily move hot plasma upward and cool plasma downward in the familiar
process of thermal convection.

Nearly all stars rely on convective energy transport across at least some portion of their
interior. When stars convect, they do so vigorously; stellar convection is highly turbulent.
This may be quantified by the Reynolds number, Re, which measures the magnitude of
nonlinear advection relative to viscous diffusion. In stellar convection zones, Re = UL/ν >
1012, where U and L are characteristic velocity and length scales and ν is the kinematic
molecular viscosity.

Turbulent flow in an electrically conducting fluid inevitably generates magnetic fields.
This is true provided that the flow is three-dimensional (see §4) and the magnetic Reynolds
number Rm = UL/η, where η is the (molecular) magnetic diffusivity, is sufficiently large.
This is easily satisfied in stars, where Rm ∼ 105–1010. Thus convection, together with the
rotational shear and meridional circulation it generates, is ultimately responsible for the rich
display of magnetic activity so evident in the Sun and other stars and so central to the
discipline of Heliophysics.

1.2 A Simple Model

The simplest system that exhibits thermal convection is a two-dimensional (2D) Cartesian
layer heated from below and cooled from above. Here we label the vertical dimension z and
the horizontal dimension y. We assume that the layer has a finite vertical extent D and an
infinite (periodic) horizontal extent. For simplicity we adopt the Boussinesq approximation
whereby we assume that D is much smaller than the density, pressure, and temperature scale
heights of the background stratification, that flow speeds are much less the sound speed, and
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that pressure variations produced by the convection are relatively small such that buoyancy-
inducing density variations are inversely proportional to temperature variations1.

The relevant non-dimensional Boussinesq, 2D equations are as follows:

∇·v = ∇·B = 0 , (1)

∂ω

∂t
= −∇· (ωv − JB) +RaPr

∂T

∂y
+ Pr ∇2ω , (2)

∂T

∂t
= −∇· (Tv) +∇2T , (3)

∂A

∂t
= −∇· (Av) +R−1

m ∇2A . (4)

Here v and B represent the velocity and magnetic fields and T is the temperature variation
relative to a hydrostatic background stratification. The fluid vorticity ω and the current
density J are given by

ω = [∇×v] ·x̂ (5)

J = [∇×B] ·x̂ = −∇
2A (6)

and the scalar magnetic potential A is defined such that

B = ∇× (Ax̂) . (7)

The equations are made non-dimensional using the length scale D and a thermal diffusion
time scale D2/κ where κ is the thermal diffusivity. In sections 2 and 3 we focus on the non-
magnetic case A = B = 0. Here there are two nondimensional parameters, the first of which
is the Rayliegh number Ra, which quantifies the magnitude of the buoyancy force relative
to viscous and thermal dissipation. The second parameter is the Prandtl number Pr = ν/κ,
which quantifies the relative efficiency of viscous and thermal diffusion. In §4 we briefly
consider magnetism, in which case there is a third parameter, the magnetic Reynolds number
Rm. For this choice of nondimensional scaling, Rm ≡ UL/η = Pm/Pr where Pm = ν/η is
the magnetic Prandtl number.

The IDL program convection.pro solves equations (1)–(4) under the assumption of isother-
mal, impenetrable, stress-free, perfectly conducting boundaries such that

ω =
∂2ω

∂z2
= A = 0 (z = 0, 1) (8)

and
T = 0.5 (z = 0) T = −0.5 (z = 1). (9)

1The Boussinesq approximation is discussed in many introductory fluid dynamics textbooks; see, for
example Chandrasekhar (1961) or Kundu (1990). For a thorough exposition in a magnetohydrodynamic
(MHD) context see Proctor & Weiss (1982)

2



2 Convective Instability

An equilibrium solution to equations (1)–(4) is given by

ω = A = 0 (10)

and

T = Te ≡
1

2
− z . (11)

We can check the linear stability of this equilibrium by introducing temperature perturba-
tions of the form

T = Te + θ (12)

and then expressing θ in terms of sinusoidal basis functions such that

θ(y, z, t) = Θ0 sin (nπz) exp (ıky + σt) , (13)

with a similar expansion for ω. If A = 0 initially, equation (4) ensures that it will remain zero
so we need not bother with magnetism in this section2. The result is that the equilibrium is
unstable (perturbations grow exponentially in time) if the Rayleigh number exceeds a critical
value given by (Chandrasekhar, 1961)

unstable if Ra > Rk =
(n2π2 + k2)

3

k2
. (14)

In our bounded, periodic system, the horizontal wavnumber is given by k = 2πm/Ly where
Ly is the aspect ratio of the computational domain (y ranges from 0 to Ly). In this laboratory
exercise we’ll focus on Ly = 2, although you are free to explore different aspect ratios if time
permits (see §2, Step 5 below).

Each mode will have a different value of Rk but the overall stability of the layer will be
governed by the mode with the lowest value. For Ly = 2, the critical mode turns out to be
the gravest mode, that with n = m = 1. Substituting these values into equation (15) yields
a critical Rayleigh number of

Rc = min (Rk) = 779 (Ly = 2) . (15)

Laboratory Exercise

Step 1: Start IDL. At the IDL command line type

IDL> convection

Congratulations! You have just become a modeler; you are now running a convection
simulation! On the screen you will see the various parameters that describe the simulation,
set to their default values. Note how many there are just for this simple numerical model!
You can reset any of these parameters on the command line as described below. However,
keep in mind that the underlying (non-magnetic) physical/mathematical model described

2The linear stability problem becomes much richer when A 6= 0; for a taste see Proctor & Weiss (1982).
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by equations (1)-(3) only has two parameters, Ra and Pr. Note their values now and note
also the value of Rk, the critical Rayleigh number corresponding specifically to the initial
perturbation. The quantity Rk is not a parameter of the problem that you can specify;
rather, it is computed from equation (14) given the horizonal and vertical wavenumbers of
the initial perturbation, k = 2πm/Ly and nπ. In the numerical code, m and n are set by
the parameters nky and nkz.

Wait for the IDL command line prompt to return. That means the simulation is finished.
We said above [see eq. (15)] that the critical Rayleigh number Rc is equal to 779 (recall that
Rk ≥ Rc). Let’s start with a simulation with a value of Ra less than Rc. Check the output
on your screen (you may want to make the window bigger so you can see it all). Is the value
of Ra listed less than 779? If so, proceed to Step 2. If not, you can run another simulation
with a different Rayleigh number by typing, e.g.

IDL> convection, R_a = 700

Note that IDL is case insensitive so r_a is the same as R_a. Wait for the IDL prompt to
return and then proceed to Step 2.

Step 2: Do you expect this system to be stable or unstable? In order to check, type:

IDL> convection_scalar

This plots the value of the volume-integrated kinetic energy Ek =
∫

v2dA (solid line) and
the integrated temperature variance

∫

T 2dA (dotted line) as a function of time on the upper
plot. The lower plot shows the kinetic energy growth rate as a function of time (solid line),
defined as γ = d lnEk/dt. Horizontal lines indicate exponential behavior. The dot-dashed
line indicates zero growth rate (statistically steady) for comparison. You can specify one or
both of the vertical axis ranges by typing, for example,

IDL> convection_scalar,yr1=[1.e-20,1.0],yr2=[-4,2]

The kinetic energy of the initial perturbation should exponentially grow or decay de-
pending on whether the system is unstable or stable. This is the exponential growth/decay
phase when γ = 2 times3 the real part of σ as expressed in equation (13). Note the value of
Ra and the approximate value of γ during the exponential growth/decay phase as read off
the plot. Write them down - you may want them later in Step 5.

Depending on your value of Ra, you may notice that the rate of decay flattens out at
long times, after the kinetic energy drops below about 10−16. This number may ring a bell;
double-precision numbers in computer codes generally only have 16 significant digits. Thus,
you might guess that this “flattening out” is not “real”, in the sense that it is not an accurate
solution of the governing equations (1)-(3). In other words, it is numerical noise. You’d be
right; if it were an exact solution it would continue to decay exponentially at the same rate
forever. This gives you a taste of some of the limitations of numerical modeling; always keep
them in mind when interpreting a numerical solution of a mathematical system!

Step 3: Now try a value of Ra greater than Rc, say

IDL> convection,R_a = 2000

3The factor of two comes in because we’re plotting the kinetic energy, which goes as the velocity squared.
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wait for the prompt to come back, and then look at the energy traces

IDL> convection_scalar

Is this one stable or unstable? Write down the value of Ra and the value of γ during the
exponential growth phase. Does exponential growth persist indefinitely, or does the slope
flatten out? In Step 2, we said the flattening out in that simulation was not real. Is this
one real? Why would the exponential growth stop? Note the saturation value of the kinetic
energy (where Ek approaches a constant value, at least in a time-averaged sense).

What happens to the temperature variance after the kinetic energy saturates? You can
check this on a linear scale by typing

IDL> convection_scalar,/temperature

Now the top plot shows just the temperature variance on a linear (as opposed to logarithmic)
scale. The bottom plot is the kinetic energy growth rate as before, approching zero at
saturation. Any idea why the temperature variance does what it does? If not, stay tuned -
you’ll get a better feel for this as we proceed (see §3).
Step 4: In order to see what the convection looks like, type

IDL> convection_movie

This displays the 2D solution on the screen and writes the images to disk where they can be
combined as movie frames using a utility such as the Apple QuickTime player. The default
is to show the temperature (q=3), with red denoting hot fluid and blue cold. However, you
can also type:

IDL> convection_movie,q = 1

to see the vorticity ω. Red denotes counter-clockwise circulations and blue denotes clockwise.
Other options are written on your screen (or look in the file convection movie.pro).

Step 5: Play around! As time permits, explore a few other parameter sets. You may wish
to do sections 3 and 4 first and come back to this if you have time. Questions to explore
include: Does the growth rate γ depend on Ra or Pr? What about the saturation level of
the kinetic energy, which is related to the Reynolds number4. Does Rc depend on Pr or
Ly? What happens if the initial perturbation has a different wavenumber (n > 1 and/or
m > 1)? What happens if the value of Ra is less than the critical value for that particular
input perturbation, Rk, but greater than the ultimate critical value Rc? What happens if
you pick an Ra that is very large or very small? Note that you can combine parameters, for
example:

IDL> convection, R_a = 5000, P_r = 2, Ly = 4

Implications:

Clearly, in order for our layer to be convectively unstable, the temperature must decrease

4In our nondimensional units, the Reynolds number can be defined as Re =
√
Ek/Pr, where Ek is the

mean kinetic energy.
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outward, ∂T/∂z < 0. In a compressible fluid the corresponding criterion is the Schwarzchild
criterion, ∂S/∂z < 0, where S is the specific entropy. However, this is not enough. In
order to convect, the buoyancy force must overcome the stabilizing effects of viscous and
thermal diffusion. This is the physics behind the critical Rayliegh number, Rc. Although
stars are comfortably supercritical (Ra > 1020), numerical simulations are less self-assured
(Ra ∼ 105–107).

3 Heat Transport and Boundary Layers

As emphasized in §1.1, convection is, above all else, a means to transport heat. We can make
this explicit by writing the thermal energy equation (3) as follows:

∂T

∂t
= −∇· (Tv −∇T ) = −∇· (F e +Fd) , (16)

where F e = Tv is the convective enthalpy flux and Fd = −∇T is the heat flux due
to thermal diffusion. We’re most interested in the vertical transport, so we can average
equation (16) over y to obtain

∂ 〈T 〉
∂t

= − ∂

∂z
(Fe + Fd) , (17)

where Fe = 〈Tvz〉, Fd = −〈∂T/∂z〉, and angular brackets denote averages over y.
We now define the Nusselt number Nu as the heat flux relative to Fnc, which is the heat

flux that would have prevailed if there were no convection.

Nu =
Fe + Fd

Fnc

. (18)

Without convection, the transport would be purely diffusive and T would be given by equa-
tion (11), so Fnc = −∂T/∂z = 1. Now, if the system is in a statistically steady state, the
time-averaged value of Nu will be independent of height, z. Energy will enter through the
bottom boundary, pass through the layer, and exit through the top boundary. Thus, the
value of Nu at the boundaries will tell us the energy flux through the layer. Since there is no
flow through the top and bottom boundaries, then Fe = 0 at those boundaries. So, the heat
flux through the boundaries is from diffusion alone. In fact, in terms of our non-dimensional
variables, the heat flux through the top and bottom boundaries is just the vertical temper-
ature gradient at those boundaries, so the Nusselt number is just;

Nu = − ∂ 〈T 〉
∂z

∣

∣

∣

∣

b

(19)

evaluated at either the top or the bottom boundary.

Laboratory Exercise

Step 1: Run a simulation with a mildly supercritical Rayliegh number of 2000 by entering
the following in IDL:

6



IDL> convection, R_a = 2000

Wait for the prompt, then take a look at the vorticity structure by typing

IDL> convection_movie,q = 1

You should see a few big convective rolls.

Step 2: Now check out the temperature structure as follows:

IDL> convection_movie,q = 3

Note how upflows and downflows have pulled warm and cool fluid from the boundaries into
the interior of the layer. To see how this has changed the mean temperature stratification
type

IDL> Tmean_movie

The solid line shows the mean temperature 〈T 〉 and the dotted line shows the initial equilib-
rium profile Te as in equation (11). The animation shows how 〈T 〉 changes with time. The
value of the Nusselt number at different times is printed to the screen and the final value is
noted on the plot, evaluated as an average of the vertical temperature gradient at the upper
and lower boundaries according to equation (19).

What does this imply about the efficiency of convection? In order to answer this, realize
that a value of Nu = 2, say, means that twice as much heat is passing through the layer as
would have been the case without convection. Note also the nature of the mean temperature
profile. By pushing most of the temperature gradient to the boundaries, convection has
made the middle of the layer almost isothermal (constant temperature).

Step 3: What do you think will happen if we increase the Rayleigh number? Higher values
of Ra require higher spatial resolution in order to adequately capture the structure of the
boundary layers and the turbulent flows that arise. High-resolution simulations take too long
to run in the space of this laboratory exercise but we’ve made some results from a higher
resolution case available in the directory “highres”. This is for a simulation with Ra = 106

and Pr = 5.
To see what the temperature structure of the convection looks like, go to the highres

directory and view the quicktime movie temperature.mov. How is the structure different
from the lower-Rayleigh number case? Note in particular the thin thermal plumes sprouting
from the boundary layers. Now check out the vorticity structure in vorticity.mov. Now
watch the evolution of the mean temperature for the high resolution case in Tmean.mov.
What has happened with the width of the boundary layers and the value of Nu?

If the convection were three-dimensional, it would be turbulent in this parameter regime,
with plumes continually sprouting from the boundary layers and dissipating. However, 2D
turbulence exhibits self-organization processes that favor an ultimate state with two big rolls.
Still, in both 2D and 3D, if you were to keep increasing Ra you’d find that the boundary
layers would get thinner and thinner and Nu would get bigger and bigger.

Implications:

Is it any wonder that stars employ convection as a means to transport heat outward from
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their interiors? High values of Nu imply efficient heat transport, and the higher the Ra,
the higher the Nu. Great effort has been devoted to investigating how Nu and Re scale
with Ra and Pr in laboratory experiments, numerical simulations, and theoretical models,
particularly in the highly turbulent regime Ra >> Rc. For an overview, see the recent review
article by Ahlers et al. (2009). Much of this work focuses on the thermal boundary layers that
mediate the heat exchange between the the boundaries and the fluid and thereby regulate
the buoyancy driving. Thus, boundary layers play an essential dynamical role regardless of
how thin they may be.

4 Convection and Magnetism

One of our main motivations for investigating solar and stellar convection is the essential role
it plays in generating the magnetic fields that lie at the root of solar and stellar variability.
Can the convective flows we’ve been studying in this laboratory exercise generate magnetic
fields? This is the question we’ll be concerned with in this brief but important section.

Laboratory Exercise

Step 1: Let’s begin with the same mildly supercritical case that we began with in §3. If
you haven’t run anything since, then no action is needed but it doesn’t hurt to run it again
just to make sure you have the right data:

IDL> convection, R_a = 2000

To continue this simulation with the addition of a small seed magnetic field type

IDL> convection, R_a = 2000, restart = 2000, /magnetism

Step 2: Wait for the prompt, then check the evolution of the magnetic energy by typing

IDL> convection_scalar, sim = 3

This is the same output as in previous sections but now the magnetic energy Em(t) =
∫

B2dA
is plotted as a dashed line in the upper plot and the lower plot shows the magnetic growth
rate d lnEm/dt. Positive values imply growth, negative values imply decay.

Step 3: Take a look at the structure of the magnetic field by typing

IDL> convection_movie, sim = 3, q = 4,/noscale

The /noscale bit means that the color table in each image is scaled to it own minimum and
maximum values so you can see what the field looks like as its amplitude changes (omitting it
sets a scale based on the final state). The q=4 selects the magnetic potential A for plotting,
so contour lines are equivalent to field lines.

Step 4: You should have found in Step 3 that the magnetic energy grows initially, as the
convection sqeezes and stretches out magnetic fields. However, diffusion ultimately catches
up and dissipates the field. Might it be that our magnetic Reynolds number is just too
low (§1.1)? You may try different parameter values if you wish (recall that in our system
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Rm = Pm/Pr so you can change it by changing Pm) but you’ll find that the answer is always
the same; no matter how big Rm is, the magnetic energy will eventually diffuse away. Always.
So what’s going on?

Implications:

Convection breeds magnetism, but not in two dimensions. Cowling’s anti-dynamo theorem
says that a strictly 2D dynamo is not possible. Field lines may get stretched and ampli-
fied in one direction but they’ll get tangled and squeezed in the perpendicular direction
such that ohmic diffusion ultimately wins out. There are many fascinating aspects of 2D
magnetoconvection (see Proctor & Weiss, 1982) but dynamo action is not one of them.

Two-dimensional dynamo models do exist, but in order to be viable, they must include
parameterizations for three-dimensional processes that are not captured explicitly in the
simulation. The most familiar example is the α-effect of mean-field dynamo theory.
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