

Which topic is (probably, at this point in time) your primary interest?

1. Solar physics
2. Heliosphere
3. Earth ionosphere/magnetosphere
4. Planetary space physics

Planetary Dynamos \& Magnetospheres
 See vol. III ch. 7 \& vol. I ch. 13

MERCURY:

- Small
- Minute timescales
- Solar wind dominated

EARTH:

- Intermediate
- Hour timescales
- Solar wind driven

JUPITER:

- Giant
- Timescales - minutes to months?
- Rotationally driven - solar wind triggered?

~100 missions since 1957 e.g. Polar, Geotail, FAST, SAMPLEX, Cluster

Testing our understanding of Sun-

 Earth connections through application to other planetary systems

Pioneer, Voyager, Ulysses, Galileo, Cassini

Table 3 Planetary Magnetic Fields

	Ganymede	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
B $_{\text {Dipole }}{ }^{a}(\mathrm{nT})$	719	$170-270$	30,600	430,000	21,400	22,800	14,200
Maximum / Minimum b	2	~ 2	2.8	4.5	4.6	12	9
Dipole Tilt and Sense c	-4°	$\sim+10^{\circ}$	$+9.92^{\circ}$	-9.4°	-0.0°	-59°	-47°
Dipole offset $^{\circ}(R P)$	-	-	0.119	0.038	0.352	0.485	
Obliquity ${ }^{\circ}$	0°	0°	23.5°	3.1°	26.7°	97.9°	29.6°
Range in Solar Wind Angle f	90°	90°	$67-114^{\circ}$	$87-93^{\circ}$	$64-117^{\circ}$	$8-172^{\circ}$	$60-120^{\circ}$

$a^{\text {Surface field at dipole equator. Values derived from modeling the magnetic field as an offset, tilted dipole (OTD). }}$
b Ratio of maximum surface field to minimum (equal to 2 for a centered dipole field). This ratio increases with larger non-dipolar components and tends to increase with the planet's oblateness.
${ }^{c}$ Angle between the magnetic and rotation axes. Positive values correspond to magnetic field directed north at the equator.
d Values for the giant planets come from dipole (OTD) models of Connerney (1993). The Earth's dipole is from the International Geomagnetic Reference Field while the magnetic dip poles of the Earth's field are located (in 2010) at $85^{\circ} \mathrm{N}$ and $64^{\circ} \mathrm{S}$ latitudes and moving over 10 degrees per century (Finlay et al. 2010).
${ }^{e}$ The inclination of a planet's spin equator to the ecliptic plane.
f Range of angle between the radial direction from the sun and the planet's rotation axis over an orbital period. In Ganymede's case, the angle is between the corotational flow and the moon's spin axis.

Offset Tilted Dipole (poor) Approximation

Stanley \& Glatzmaier 2010
Earth

$B_{\text {radial }}$ @ surface

Uranus

Saturn

Neptune

Magnetic Potential

 3-D harmonics$$
\mathbf{B}=- \text { grad } V
$$

$V=R_{\mathrm{p}} \sum_{n=1}^{\infty} \sum_{m=0}^{n}\left(\frac{R_{\mathrm{p}}}{r}\right)^{n+1} \mathrm{P}_{n}^{m}(\cos \theta) \underbrace{\left.g_{n}^{m} \cos m \lambda+h_{n}^{m} \sin m \lambda\right),}_{\text {coefficients - constants }}$
functions
$P_{0}^{0}(\cos \theta)=1$
$P_{1}^{0}(\cos \theta)=\cos \theta$
$P_{1}^{1}(\cos \theta)=-\sin \theta$
$P_{2}^{0}(\cos \theta)=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right)$
$P_{2}^{1}(\cos \theta)=-3 \cos \theta \sin \theta$
$P_{2}^{2}(\cos \theta)=3 \sin ^{2} \theta$
$P_{3}^{0}(\cos \theta)=\frac{1}{2}\left(5 \cos ^{3} \theta-3 \cos \theta\right)$

Same technique used to model cosmic microwave background

or interior of Sun with Helioseismology..

International Geomagnetic Reference Field

vol. III ch. 7
From accurate measurement of surface field:

Br surface

Br core-mantle boundary $\sqrt{ }$

1. Extrapolate to core-mantle boundary = dynamo

2. Derive core flows

$$
\frac{\partial \mathrm{B}_{\mathrm{r}}}{\partial \mathrm{t}}=-\underset{h=\text { horizontal }}{\nabla_{h}} \bullet\left(\mathbf{u}_{\mathrm{m}} \mathrm{~B}_{\mathrm{r}}\right)
$$

3. Secular variation \& reversals.....

Fig. 7.2. Radial component of the geomagnetic field at the Earth's surface (a) and at the core-mantle boundary (b). Full lines for inward magnetic flux and dashed lines for outward flux. Contour intervals are arbitrary and different in the two panels.

Secular variation

Dipole dropped by 9\% since 1840 Reconstructions of core field morphology 1590 - now Fluctuations of non-dipole parts on time scales 50-400 yrs Stability of high-latitude flux lobes Westward drift in Atlantic / Africa

Hulot et al. 2010

2. rate

Fig. 29 Estimate of the reversal rate (in My^{-1}) for the time interval $0-500 \mathrm{Ma}$, where reversal rates are estimated by geological stage, rather than by using a moving window average (as in Fig. 28), to harmonize post- and pre- 150 Ma data for which much less data is available. After Pavlov and Gallet (2005)

Planetary Dynamos

 See vol. III ch. 7 Volume of electrically conducting fluid 1 which is convecting (2) and rotating

All planetary objects probably have enough rotation - the presence (or not) of a global magnetic field tells us about (1) and (2)

Magnetic fields of solar system planets

Spacecraft detected magnetic fields at most (but not all) major planets

Planet	Dynamo	R_{c} / R_{p}	$B_{s}[\mu T]$	Dip. tilt	$\frac{\text { Quadr }}{\text { Dipole }}$
Mercury	Yes (?)	0.75	0.35	$<5^{\circ} ?$	$0.1-0.5$

Earth	Yes	0.55	44	10.4°	$0.04 K_{K}$

V. dipolar

Jupiter	Yes	0.84	640	9.4°	0.10
Saturn	Yes	$0.6 ?$	31	0°	0.02
Uranus	Yes	0.75	48	59°	1.3
Neptune	Yes	0.75	47	45°	2.7
Ganymede	Yes	$0.3 ?$	1.0	$<5^{\circ} ?$	$?$

\mathbf{R}_{c} / \mathbf{R}_{p} : core / planetary radius, B_{s} : Mean field at planet's surface, Quadr. / dipole power at \mathbf{R}_{c}

- Dipole - n=1
- Quadupole - n=2
- Quadrupole/Dipole ratio indicates irregular field

Moon \& Mars: All Crustal Remanent Magnetization

Power spectra of the field of internal origin for the Earth (after Olsen et al. 2009a and Maus et al. 2008), Mars (after Cain et al. 2003), Jupiter, Mercury (after Connerney 2008) and the Moon (after Purucker 2008) at their respective surface reference radius. Also shown are theoretical crustal spectra (thin curves, Voorhies et al. 2002) for the Earth, Mars and the Moon.

Mercury

Planet	Density $\left[\mathbf{g} \mathbf{c m}^{-3}\right]$	$\boldsymbol{R}_{\text {core }} / \boldsymbol{R}_{\text {planet }}$
Mercury	5.43	0.75
Venus	5.24	0.55
Earth	5.515	0.55
Moon	3.36	0.2
Mars	3.94	0.5
Ganymede	1.94	0.3

Why don't Venus or Mars have dynamos?

What drives
 the
 geodynamo

In words...
Vol. III
Ch. 7
p 192
Or by picture...
gravitational acceleration). In terrestrial planets, the adiabatic heat flow can be a large fraction of the actual heat flow, or it may exceed the actual heat flow, in which case at least the top layers of the core would be thermally stable. Near the top of Earth's core approximately 3-4 TW can be conducted along the adiabat (Lay et al., 2008), i.e. close to the minimum estimates for the entire core heat flow. But even if all heat flux near the core-mantle boundary were carried by conduction, a convective dynamo can exist thanks to the inner core. At the inner core boundary, the adiabatic temperature profile of the convecting outer core crosses the melting point of iron. The latter increases with pressure more steeply than the adiabatic gradient, which is the reason why the Earth's core freezes from the center rather than from above. As the core cools, the inner core grows with time by freezing iron onto its outer boundary. This has two important implications for driving the dynamo. The latent heat that is released upon solidification is an effective heat source, which contributes to the heat budget approximately the same amount as the bulk cooling of the core. The heat flux that originates at the inner core decreases with radius as r^{-2} in the spherical geometry of the fluid core. The adiabatic temperature gradient is roughly proportional to r, because gravity decreases towards the center. Therefore, even if the actual heat flux were slightly less than the adiabatic heat flux near the core-mantle boundary, it must be superadiabatic deeper down. A second, perhaps more important effect is that the light elements in the outer core are preferentially rejected when iron freezes onto the inner core. Hence, they become concentrated in the residual fluid near the inner core boundary. This layering is gravitationally unstable because of the reduced density, which leads to compositional convection that homogenizes the light elements in the bulk of the fluid core. Compositional convection contributes as much as, or more than, thermal convection to the driving of the geodynamo in recent geological times.

Earth: Internal structure \& energetics

- Seismology: Dense core with $R_{c} / R_{p}=0.55$
- Fe only cosmochemically abundant element matching density
- No shear waves in outer core, hence it is liquid
- Solid inner core with $0.35 \mathbf{R}_{\mathbf{c}}$
- ~10\% light element (Si, S, O, ...) in outer core, less in inner core
- Earth heat flow 44 TW. Core fraction estimated 3-15 TW
- Core heat flow mostly due to secular cooling

Why Don't Venus or Mars have Dynamos?

- Enough rotation - even for Venus
- Conducting fluid core - probably
- Lack of convection in core?
- Mantle convection controls heat flow from core
- Lack of plate tectonics suggests less efficient cooling of interior and lower heat flux from core
- No inner core means no latent heat of solidification and no enhancement of lighter material in the outer core

Giant Planets

	$\underset{A U}{\text { Distance }}$	$\begin{gathered} \text { Mass } \\ \text { Earth Mass } \end{gathered}$	$\begin{gathered} \text { Radius } \\ \text { Earth Radi } \end{gathered}$	Density $1=$ water	Composition \% by mass
Jupiter	5.20	318	11.2	1.33	90\% H, He
Saturn	9.54	95	9.46	0.71	$\begin{aligned} & 75 \% \\ & \mathrm{H}, \mathrm{He} \end{aligned}$
Uranus	19.2	14	3.98	1.24	$10 \% \mathrm{H}, \mathrm{He}$ Water Ammonia Methane
\mathcal{N} eptune	30.1	17	3.81	1.67	$10 \% \mathrm{H}, \mathrm{He}$ Water Ammonia Methane

Liquid Water, Ammonia, Methane
Rock

Uranus and Neptune have much less mass
$>$ Lower pressures
$>$ No metallic hydrogen
$>$ Weak \& irregular magnetic fields produced in water layer, deep below gas envelope

Mass of Jupiter

Interior of Jupiter Using Best Equation of State

Current knowledge of Jupiter is limited to n < 4
Earth dynamo at $\mathrm{n}>14$ is hidden by crustal field
Juno will measure out to n ~ 20
Determine spectral shape, dynamo radius, and secular variations

Dynamo Models - Lecture 1 Eqns. \& discussion

Comparison with Earth: Field morphology

Dynamo model, full resolution

Dynamo model, filtered to $\mathbf{n}<13$

- Flux lobes at $60-70^{\circ}$ latitude
- Weak flux at poles
- Flux spots of both polarities at low latitude. Expulsion of toroidal field bundles?
- Westward vortex flow in polar cap

Earth's field at core mantle boundary

Power-controlled field strength

Hypothesis: The magnetic energy density depends on thermodynamically available energy flux, that is the part of the energy flux that can be converted to magnetic energy and can balance ohmic dissipation The field strength is independent of rotation rate, conductivity, viscosity,...

$$
B^{2 / 2} \mu_{o} \sim f_{o h m} \rho^{1 / 3}\left(L / H_{T} q_{c}\right)^{2 / 3}
$$

q_{c} : convected heat flux, $\quad \mathrm{H}_{\mathrm{T}}=\mathrm{c}_{\mathrm{p}} /(\mathrm{ag})$: temp. scale height, L : charact. radial length scale, ρ : density, $\quad \mathrm{f}_{\text {ohm }}$: ratio ohmic dissipation / total dissipation

Dynamo Scaling Laws

Vol. III Ch. 7

Fig 7.10 Earth Models

Core Heat Flux

Fig 7.11 Planets \& Stars

Dipole Magnetic Field in Solar Wind

 SW Ram Pressure \longleftrightarrow Magnetic Pressure

Chapman-Ferraro Distance

$$
\mathbf{R}_{\mathbf{C F}} / \mathrm{R}_{\mathrm{p}} \sim\left\{\mathbf{B}_{\mathrm{o}}^{2} / 2 \mu_{o} \rho_{\mathbf{s w}} \mathrm{V}^{2}{ }_{\mathbf{s w}}\right\}^{1 / 6}
$$

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
B_{O} Gauss	.003	.31	4.28	.22	.23	.14
R_{CF} Calc.	$1.4 \mathrm{R}_{\mathrm{M}}$	$10 \mathrm{R}_{\mathrm{E}}$	$42 \mathrm{R}_{\mathrm{J}}$	$19 \mathrm{R}_{\mathrm{S}}$	$25 \mathrm{R}_{\mathrm{U}}$	$24 \mathrm{R}_{\mathrm{N}}$
R_{M} Obs.	$1.4-1.6$ R_{M}	$8-12$ R_{E}	$60-90$ R_{J}	$16-22$ R_{S}	$18 \mathrm{R}_{\mathrm{U}}$	$23-26$ R_{N}

Earth ~ Dipole

$$
\mathrm{R}_{\mathrm{mp}}->0.7 \mathrm{R}_{\mathrm{mp}}
$$

solar wind $\rho \mathrm{V}^{2}$

x10 Solar wind pressure

Jupiter

$$
\mathrm{R}_{\mathrm{mp}}->0.5 \mathrm{R}_{\mathrm{mp}}
$$

solar wind ρV^{2}

Factor ~ 10 variations in solar wind pressure at $5 \mathrm{AU}-$ > observed 100-50 Rj size of dayside magnetosphere

Solar wind interaction with planets - Vol. I Ch. 13
also Bagenal 2011

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto
Distance from Sun, a_{p} (A.U.) ${ }^{a}$	0.39	0.72	$1^{\text {b }}$	1.52	5.2	9.5	19	30	40
Solar Wind Density ${ }^{(}\left(\mathrm{cm}^{-3}\right)$	53	14	7	3	0.2	0.07	0.02	0.006	0.003
IMF strength ${ }^{c}(\mathrm{nT})$	41	14	8	5	1	0.6	0.3	0.2	0.1
IMF azimuth angle ${ }^{\text {c }}$	23°	38°	45°	57°	80°	84°	87°	88°	88°
Radius, $R_{P}(\mathrm{~km})$	2,439	6,051	6,373	3,394	71,400	60,268	25,600	24,765	$1,170(\pm 33)$
Sidereal spin period (day)	58.6	-243	0.9973	1.026	0.41	0.44	-0.72	0.67	-6.39
Magnetic Moment ${ }^{d}\left(\mathrm{M}_{\mathrm{E}}\right)$	$3-6 \times 10^{-4}$	$<10^{-5}$	1	$<10^{-5}$	20,000	600	50	25	?
Surface Magnetic Field ${ }^{e} B_{O}(\mathrm{nT})$	250-290	-	30,600	-	430,000	21,400	22,800	14,200	?
$R_{C F} f\left(\mathrm{R}_{P}\right)$	1.6RM	-	10 RE	-	46 RJ	20 RS	25 RU	24 RN	?
Observed $R_{M P}\left(\mathrm{R}_{\mathrm{P}}\right)$	1.5 RM	-	8-12RE	-	63-92 RJ	$22-27 \mathrm{RS}$	18 RU	23-26 RN	?

a_{1} A.U. $=1.5 \times 10^{8} \mathrm{~km}$
${ }^{b}$ The number density of the solar wind fluctuates by about a factor of 5 about typical values of $\left.n_{S w} \sim 7\left(\mathrm{~cm}^{-3}\right) / a_{p}{ }^{2}\right]$. The mass density of the solar wind is $\rho_{S w}=1.04 n_{S W}\left(\mathrm{amu} \mathrm{cm}{ }^{-3}\right)$
${ }^{c}$ Mean values for the interplanetary magnetic field (IMF) in units of nano-Tesla with spherical components $B r, B \theta, B \phi$. The azimuth angle is $\tan ^{-1}(B \phi / B r)$. The radial component of the IMF, $B r$, decreases as $1 / a_{p}^{2}$ while the transverse component, $B \phi$, increases with distance.
$d_{\text {M }}^{\text {Earth }}$ $=7.9 \times 10^{25}$ Gauss cm ${ }^{3}=7.9 \times 10^{15}$ Tesla m 3
e Magnitude of dipole (see text for references).
$f R_{C F}$ is calculated using $R_{C F}=\xi\left(B_{O}^{2} / 2 \mu_{O} \rho V_{S W}{ }^{2}\right)^{1 / 6}$ for typical solar wind conditions of $\rho_{S w}$ given above and $V_{S W} \sim 400 \mathrm{~km} \mathrm{~s}^{-1}$ and ξ an empirical factor of ~ 1.4 to match Earth observations (Walker and Russell 1995).

Lecture 4
Vol. I Ch. 10
Dungey Cycle
Dynamics at Earth driven by the solar wind coupling the Sun's magnetic field to the Earth's field

Reality = Messy \& 3D

Dynamics

1

2

- Response to B_{sw} direction
- Solar wind ram pressure

Tail Reconnection

- Depends on recent history of dayside reconnection and state of plasmasheet

$$
\mathbf{V}_{\mathrm{co}} \sim \Omega \times \mathbf{R}
$$

Fraction of planetary magnetosphere that is rotation dominated is...
(a) COROTATION

$\mathbf{V}_{\text {convection }}$
 $\sim \zeta \mathrm{V}_{\mathrm{Sw}}\left(\mathrm{R} / \mathrm{R}_{\mathrm{MP}}\right)^{3}$

Where $r_{p}=$ planetary radius
$\mu=$ magnetic moment of planet $B_{o} R_{p}{ }^{3}$

Magnetospheric Dynamics - Vol. I Ch. 13 also Bagenal 2011

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
$\mathrm{R}_{\mathrm{MP}^{2}}(\mathrm{~km})$	4000	6.5×10^{4}	6×10^{6}	1×10^{6}	6×10^{5}	6×10^{5}
$V_{\text {sw }}{ }^{\text {b }}$ (km/s)	370	390	420	430	450	460
$\mathrm{t}_{\mathrm{N}-\mathrm{T}} \mathrm{c}^{\text {c }}$	10 s	3 min	4 hr	45 min	20 min	20 min
$\mathrm{R}_{\mathrm{T}}{ }^{\text {d }}$ (R_{p})	3	20	170	40	50	50
$\mathrm{R}^{\text {d }}{ }^{\text {d }}$ (km)	8000	1.3×10^{5}	1.2×10^{7}	2.3×10^{6}	1.3×10^{6}	1.2×10^{6}
$V_{\text {rec, } 1^{\text {e }} \text { e }}(\mathrm{km} / \mathrm{s})$	40	22	16	16	16	16
$V_{\text {rec, } 2}{ }^{\text {f }}$ (km/s)	37	39	42	43	45	46
	3 min	1 hr	80 hr	15 hr	8 hr	7 hr
$\mathrm{d}_{\mathrm{X}}{ }^{\text {b }}$ (R_{p})	30	200	1700	400	500	500
$\mathrm{Vco} / V_{\text {rec }}{ }^{\text {a }}$	4×10^{5}	0.04	8	1.3	0.4	0.4
$\mathrm{R}_{\mathrm{pp}}{ }^{\mathrm{j}}\left(\mathrm{R}_{\mathrm{p}}\right)$	0.03	6.7	350	95	70	70

${ }^{\text {a }}$ Sub-solar magnetopause distance.
${ }^{\mathrm{b}} V_{\mathrm{SW}}=387\left(a_{\mathrm{p}} / a_{\mathrm{E}}\right)^{0.05}(\mathrm{~km} / \mathrm{s})$ from Belcher et al. (1993)
c Solar wind nose-terminator time: $\mathrm{t}_{\mathrm{N}-\mathrm{T}}=\mathrm{R}_{\mathrm{MP}} / V_{\mathrm{SW}}$
${ }^{\mathrm{d}}$ Radius of cross section of magnetotail, approximated as $R_{\mathrm{T}}=2 R_{\mathrm{MP}}$.
${ }^{\text {e }}$ Reconnection speed assuming 20% reconnection efficiency and $v_{\text {rec }} \sim 0.2 v_{\mathrm{SW}} \mathrm{B}_{\mathrm{sw}} / \mathrm{B}_{\mathrm{MP}} \mathrm{km} / \mathrm{s}$ (e.g. Kivelson 2007)
$\mathrm{f}_{\text {Reconnection speed assuming }} 10 \%$ reconnection efficiency and $v_{\text {rec }} \sim 0.1 \nu_{\mathrm{sw}} \mathrm{km} / \mathrm{s}$
g Reconnection time $\mathrm{t}_{\text {rec }}=\mathrm{R}_{\mathrm{T}} / v_{\text {rec }, 2}$ (s)
${ }^{\mathrm{h}}$ Distance to X -line $\mathrm{d}_{\mathrm{x}} \sim v_{\mathrm{SW}} \mathrm{t}_{\mathrm{rec}}$
${ }^{i}$ Assumes rotation speed at the magnetopause is $\sim 30 \%$ of rigid corotation
j Distance to plasmapause, where corotation is comparable to reconnection flow (e.g. Kivelson 2007)

Solar-wind vs. Rotation-dominated magnetospheres

Plasma Sources

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
$\mathrm{N}_{\text {max }}$ cm^{-3}	~ 1	$1-$ 4000	>3000	~ 100	~ 3	~ 2
Comp- osition	H^{+}	O^{+} H^{+} Solar Wind sphere	lo	$\mathrm{O}^{\mathrm{n+}} \mathrm{~S}^{n}$	O^{+} $\mathrm{H}_{2} \mathrm{O}^{+}$ H^{+} Enceladus	H^{+}
Source kg / s	$?$	5	$700-$ 1200 lono- sphere	H^{+} N^{+} Triton lono- sphere		

Sources of Plasma:
 Solar Wind + ionosphere mixed (over the poles) into magnetotail and convected sunward

Ion Pick Up

The magnetic field couples the plasma to the spinning planet

Jupiter's 3 Types of Aurora

Aurora associated with moons

Jupiter's
 Aurora -
 The Movie

Fixed
magnetic co-
ordinates rotating with Jupiter

Clarke et al.
Grodent et al.

Main Aurora

- Shape constant, fixed in magnetic co-ordinates

- Magnetic anomaly in north
- Steady intensity
- ~1${ }^{\circ}$ Narrow

Clarke et al., Grodent et al. HST

The aurora is the signature of Jupiter's attempt to spin up its magnetosphere

Hill 1979

- Outward transport of Iogenic plasma
- $\mathrm{J}_{\text {|| }}$ transfers load to ionosphere
$J_{\perp} \bullet$ Transfer of angular momentum
limited by ionospheric conductivity Σ

Coupling the Plasma to the Flywheel

- As plasma from lo moves outwards its rotation decreases (conservation of angular momentum)
- Sub-corotating plasma pulls back the magnetic field

- Curl B -> radial current J_{r}
- $J_{r} \times B$ force enforces rotation

> Field-aligned currents couple magnetosphere to Jupiter's rotation

Cowley \& Bunce 2001

The aurora is the signature of Jupiter's attempt to spin up its magnetosphere

Where is the clutch slipping?

Mass loading

A - Between deep and upper atmosphere
B - Between upper atmosphere and ionosphere?
C - Lack of current-carriers in magnetosphere-> $E_{\|}$?

Vasyliunas Cycle

Vasyliunas
Cowley et al.
Southwood \& Kivelson

(3)

(2)

(1)
 sending plasmoids down the tail

Delamere \& Bagenal (2011)

Can small-scale boundarylayer processes act like

Hybrid $B x$
simulations of
Kelvin-
Helmholtz
instability

- ions=particles
- electrons=fluid

Peter Delamere, CU

Heavy Light

Juno

Polar Magnetosphere
Juno passes directly through auroral field lines

Measures particles precipitating into atmosphere creating aurora

Plasma/radio waves reveal processes responsible for particle acceleration

UV \& IR images provides context for in-situ observations

Saturn:

Strong satellite \& ring sputtering, weak ionization

- Saturn's magnetic field is very symmetric - why are there periodic variations?
- Variable rotation rate?? Changes over "season"
- Current system between poles modulating ionization? Slowly changing with illumination of ionosphere / thermospheric winds??
- North \& South ionospheres rotate at different rates??

Plasma sheet shape: forcing

- Global shape of the current and plasma sheet is determined by:
- Diurnal motion (dipole tilt) / other periodic mechanisms.
- Centrifugal forcing on plasma offset from the rotational equator.
- Stresses imposed on the magnetosphere from the solar wind.

Jupiter

Magnetospheres scaled by stand-off distance of dipole field

	$\mathrm{M} / \mathrm{M}_{\mathrm{E}}$	$\mathrm{MP} \mathrm{D}_{\text {Dipole }}$	$\mathrm{MP}_{\text {mean }}$	$\mathrm{MP}_{\text {Range }}$
Mercury	$\sim 8 \times 10^{-3}$	$1.4 \mathrm{R}_{\mathrm{M}}$	$1.4 \mathrm{R}_{\mathrm{M}}$	
Earth	1	$10 \mathrm{R}_{\mathrm{E}}$	$10 \mathrm{R}_{\mathrm{E}}$	
Saturn	600	$20 \mathrm{R}_{\mathrm{S}}$	$24 \mathrm{R}_{\mathrm{s}}$	$22-27^{*} \mathrm{R}_{\mathrm{S}}$
Jupiter	20,000	$46 \mathrm{R}_{\mathrm{J}}$	$75 \mathrm{R}_{\mathrm{J}}$	$63-92^{\#} \mathrm{R}_{\mathrm{J}}$

Note bimodal average locations
*Achilleos et al. 2008 \# Joy et al. 2002

Saturn's aurora

- strongly modulated by the solar wind
- open-closed boundary

Uranus

-Highly asymmetric,
-Highly non-dipolar
-Complex transport (SW + rotation)

- Multiple plasma sources (ionosphere + solar wind + satellites)

Neptune

Similarly complex Sols
 as Uranus

Zieger et al.

Mercury \& Ganymede

Ganymede - Magnetic field detected by Galileo in 1996

Diameter of Earth
$B_{\text {surface }} \sim \mathbf{1 / 1 0 0}$ Earth

Summary

- Diverse planetary magnetic fields \& magnetospheres
- Dynamo primarily requires region of liquid conducting material that is convecting generally limited by heat flow in core
- Earth, Mercury, Ganymede magnetospheres driven by reconnection
- Jupiter \& Saturn driven by rotation \& internal sources of plasma
- Uranus \& Neptune are complex - need to be explored!

