

Which topic is (probably, at this point in time) your primary interest?

- 1. Solar physics
- 2. Heliosphere
- 3. Earth ionosphere/magnetosphere
- 4. Planetary space physics

Planetary Dynamos & Magnetospheres See vol. III ch. 7 & vol. I ch. 13

Table 3 Planetary Magnetic Fields

	Ganymede	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
$\mathrm{B}_{\mathrm{Dipole}}{}^{a}$ (nT)	719	170-270	30,600	430,000	21,400	22,800	14,200
Maximum / Minimum ^b	2	~2	2.8	4.5	4.6	12	9
Dipole Tilt and Sense ^c	-4°	~+10°	+9.92°	-9.4°	-0.0°	-59°	-47°
Dipole offset ^{d} (<i>RP</i>)	-	-	-	0.119	0.038	0.352	0.485
Obliquity ^e	0°	0°	23.5°	3.1°	26.7°	97.9°	29.6°
Range in Solar Wind Angle ^f	90°	90°	67-114°	87-93°	64-117°	8-172°	60-120°

^a Surface field at dipole equator. Values derived from modeling the magnetic field as an offset, tilted dipole (OTD).

^b Ratio of maximum surface field to minimum (equal to 2 for a centered dipole field). This ratio increases with larger non-dipolar components and tends to increase with the planet's oblateness.

^c Angle between the magnetic and rotation axes. Positive values correspond to magnetic field directed north at the equator.

d Values for the giant planets come from dipole (OTD) models of Connerney (1993). The Earth's dipole is from the International Geomagnetic Reference Field while the magnetic dip poles of the Earth's field are located (in 2010) at 85°N and 64°S latitudes and moving over 10 degrees per century (Finlay et al. 2010).

^e The inclination of a planet's spin equator to the ecliptic plane.

f Range of angle between the radial direction from the sun and the planet's rotation axis over an orbital period. In Ganymede's case, the angle is between the corotational flow and the moon's spin axis.

Vol. I Ch. 13 (updated as Bagenal 2011)

Offset Tilted Dipole (poor) Approximation

Same technique used to model cosmic microwave background

or interior of Sun with Helioseismology...

Earth - International Geomagnetic Reference Field

			pherical harmonic coefficients, d oTesla/year for secular variation		
IGRF IGRF IGRF I	IGRF IGRF IGRF IGR	IGRF IGRF DGRF DGRF	DGRF DGRF DGRF DGRF DGRF 1955.0 1960.0 1965.0 1970.0 1975.	DGRF DGRF DGRF DGR	
g 1 0 -31543 -31464 -31354 -3	31212 -31060 -30926 -3080	5 -30715 -30654 -30594 -30554 -	-30500 -30421 -30334 -30220 -3010 -2215 -2169 -2119 -2068 -201	-29992 -29873 -29775 -296	92 -29619.4 -29554.63 -29496.5 11.4
h 1 1 5922 5909 5898	5875 5845 5817 580	8 5812 5821 5810 5815	5820 5791 5776 5737 567	5604 5500 5406 53	06 5186.1 5077.99 4945.1 -28.8
g 2 0 -677 -728 -769 g 2 1 2905 2928 2948	-802 -839 -893 -95 2956 2959 2969 296		-1440 -1555 -1662 -1781 -190 3003 3002 2997 3000 301		70 3068.4 3047.69 3026.0 -3.9
A 2 1 -1061 -1086 -1128 - q 2 2 924 1041 1176	-1191 -1259 -1334 -142 1309 1407 1471 15		-1898 -1967 -2016 -2047 -206 1581 1590 1594 1611 163		
× h 2 2 1121 1065 1000	917 823 728 64 1084 1111 1140 11	4 586 528 477 381	291 206 114 25 -6 1302 1302 1297 1287 127	8 -200 -306 -373 -4	13 -458.0 -515.43 -575.4 -12.9
u q 3 1 -1469 -1494 -1524 -	-1559 -1600 -1645 -169	2 -1740 -1790 -1834 -1889	-1944 -1992 -2038 -2091 -214	-2180 -2208 -2239 -22	67 -2288.0 -2305.83 -2326.3 -3.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-421 -445 -462 -48 1212 1205 1202 120		-462 -414 -404 -366 -33 1288 1289 1292 1278 126		49 1252.1 1246.39 1231.7 -2.9
G g 3 3 572 635 705	84 103 119 13 778 839 881 90		216 224 240 251 26 882 878 856 838 83		02 293.4 269.72 251.7 -2.9 59 714.5 672.51 634.2 -8.1
0 h 3 3 523 480 425 g 4 0 876 880 884	360 293 229 10 887 889 891 89		-83 -130 -165 -196 -22 958 957 957 952 94		27 -491.1 -524.72 -536.8 -2.1 40 932.3 920.55 912.6 -1.4
g 4 1 628 643 660	678 695 711 7 218 220 216 20	7 744 762 776 792	796 800 804 800 79 133 135 148 167 19	782 780 780 7	80 786.8 797.96 809.0 2.0
g 4 2 660 653 644	631 616 601 50	84 565 550 544 528	510 504 479 461 43	398 361 325 2	90 250.0 210.65 166.6 -8.9
h 4 2 -69 -77 -90 g 4 3 -361 -380 -400	-109 -134 -163 -19 -416 -424 -426 -42		-274 -278 -269 -266 -26 -397 -394 -390 -395 -40		
h 4 3 -210 -201 -189 g 4 4 134 146 160	-173 -153 -130 -10 178 199 217 21		-23 3 13 26 3 290 269 252 234 21		97 119.8 145.15 164.4 3.6 22 111.3 100.00 89.7 -2.3
h 4 4 -75 -65 -55 g 5 0 -184 -192 -201	-51 -57 -70 -9		-230 -255 -269 -279 -28 -229 -222 -219 -216 -21		
g 5 1 328 328 327	327 326 326 32	7 329 334 346 349	360 362 358 359 35	357 355 353 3	52 351.4 354.41 357.2 0.5
h 5 1 -210 -193 -172 g 5 2 264 259 253	-148 -122 -96 - 245 236 226 21	8 211 208 194 211	15 16 19 26 3 230 242 254 262 26	261 253 245 2	46 43.8 42.72 44.7 0.5 35 222.3 208.95 200.3 -1.5
h 5 2 53 56 57 g 5 3 5 -1 -9	58 58 58 6 -16 -23 -28 -	60 64 71 95 103 12 -33 -33 -20 -20	110 125 128 139 14 -23 -26 -31 -42 -5		65 171.9 180.25 188.9 1.5 18 -130.4 -136.54 -141.2 -0.7
h 5 3 -33 -32 -33 g 5 4 -86 -93 -102	-34 -38 -44 -5		-98 -117 -126 -139 -15 -152 -156 -157 -160 -15		
h 5 4 -124 -125 -126 g 5 5 -16 -26 -38	-126 -125 -122 -1	18 -115 -113 -119 -122	-121 -114 -97 -91 -8 -69 -63 -62 -56 -4	8 -78 -75 -69 -	55 -39.3 -19.57 0.1 3.7 17 -12.9 -13.55 -7.7 1.4
h 5 5 3 11 21	32 43 51 5	68 64 69 82 80	78 81 81 83 8	92 95 97 1	07 106.3 103.85 100.9 -0.6
g 6 0 63 62 62 g 6 1 61 60 58	57 55 54	50 59 57 59 54 53 53 54 57 57	47 46 45 43 4 57 58 61 64 6	66 65 65	68 72.3 73.60 72.8 -0.3 67 68.2 69.56 68.6 -0.3
h 6 1 -9 -7 -5 g 6 2 -11 -11 -11	-2 0 3 -10 -10 -9 -	4 4 4 6 -1 -9 -8 -7 6 4	-9 -10 -11 -12 -1 3 1 8 15 2		17 -17.4 -20.33 -20.8 -0.1 68 74.2 76.74 76.0 -0.3
	93 96 99 10 -228 -233 -238 -24		96 99 100 100 9 -247 -237 -228 -212 -19		72 63.7 54.75 44.2 -2.1 70 -160.9 -151.34 -141.4 1.9
h 6 3 2 4 5 a 6 4 -58 -57 -54		9 25 33 16 33	48 60 68 72 7	71 69 69	67 65.1 63.63 61.5 -0.4 -1 -5.9 -14.58 -22.9 -1.6
h 6 4 -35 -32 -29	-26 -22 -18 -3	16 -15 -15 -9 -12	-16 -20 -32 -37 -4	-43 -48 -52 -	58 -61.2 -63.53 -66.3 -0.5
g 6 5 59 57 54 h 6 5 36 32 28	49 44 39 3 23 18 13	8 4 0 -16 -12	7 -2 1 3 -12 -11 -8 -6 -	14 16 18 -2 -1 1	19 16.9 14.58 13.1 -0.2 1 0.7 0.24 3.1 0.8
g 6 6 -90 -92 -95 b 6 6 -69 -67 -65	-98 -101 -103 -10		-107 -113 -111 -112 -11 -24 -17 -7 1 1		93 -90.4 -86.36 -77.9 1.8 36 43.8 50.94 54.9 0.5
4 pages	later				
g 13 12 0 0 0	0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0	0 0.0 -0.10 -0.3 0.0
h 13 12 0 0 0 g 13 13 0 0 0	0 0 0	0 0 0 0 0		0 0 0 0	0 -0.5 -0.57 -0.5 0.0 0 0.1 -0.18 -0.3 0.0
h 13 13 0 0 0	0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 -0.9 -0.82 -0.8 0.0
		Time			>
g 13 13		Time —			-
yısıs	http://www.	nade noaa aov	/IAGA/vmod/igi	f html	
L 10 10					
h 13 13	http://onlin	elibrarv.wilev.co	om/doi/10.1111/i	.1365-246X.2	2010.04804.x/full
			· · · · · · · · · · · · · · · · · · ·		

Fig. 7.2. Radial component of the geomagnetic field at the Earth's surface (a) and at the core–mantle boundary (b). Full lines for inward magnetic flux and dashed lines for outward flux. Contour intervals are arbitrary and different in the two panels.

Dipole dropped by 9% since 1840 Reconstructions of core field morphology 1590 - now Fluctuations of non-dipole parts on time scales 50 – 400 yrs Stability of high-latitude flux lobes Westward drift in Atlantic / Africa

1880

about 1 and 2

Μ	agneti	c fields o	of sol	ar sy	/stem	n plan	ets
	Spacecraft de	etected magnetic	fields at	most (bı	ut not all) i	major plan	ets
	Planet	Dynamo	R _c /R _p	Β _s [μΤ]	Dip. tilt	<u>Quadr</u> Dipole	
	Mercury	Yes (?)	0.75	0.35	<5°?	0.1-0.5	
]
	Earth	Yes	0.55	44	10.4°	0.04	
							dipolar
			-			V. (
	Jupiter	Yes	0.84	640	9.4°	0.10	
	Saturn	Yes	0.6 ?	31	0°	0.02	
	Uranus	Yes	0.75	48	59°	1.3	ogular
	Neptune	Yes	0.75	47	45°	2.7	egular
	Ganymede	Yes	0.3 ?	1.0	< 5° ?	?	
R	/ R _p : core / plane	tary radius, B _s : Mean f	ield at plane	et's surface,	Quadr. / dip	ole power at R	c
Helic	physics Summer Sch	ool July 2009 Chris	tensen: Planet	ary magnetic fi	elds and dynam	os	9

- Dipole n=1
- Quadupole n=2

 Quadrupole/Dipole ratio indicates irregular field

Moon & Mars: All Crustal Remanent Magnetization

Power spectra of the field of internal origin for the Earth (after Olsen et al. 2009a and Maus et al. 2008), Mars (after Cain et al. 2003), Jupiter, Mercury (after Connerney 2008) and the Moon (after Purucker 2008) at their respective surface reference radius. Also shown are theoretical crustal spectra (thin curves, Voorhies et al. 2002) for the Earth, Mars and the Moon.

Rock					lo Portosonal Portoson
Mercury V	enus	Earth I	Moon	Mars Ga	nymede
Planet	Density [g cm ⁻³]	R _{core} /R _{planet}			
Mercury	5.43	0.75		Why dor	ז't
Venus	5.24	0.55		Venus or N	
Earth	5.515	0.55	ľ	nave dynar	nos?
Moon	3.36	0.2	1		
Mars	3.94	0.5	1		
Ganymede	1.94	0.3	1		

gravitational acceleration). In terrestrial planets, the adiabatic heat flow can be a large fraction of the actual heat flow, or it may exceed the actual heat flow, in which case at least the top layers of the core would be thermally stable. Near the top of Earth's core approximately 3–4 TW can be conducted along the adiabat (Lay et al., 2008), i.e. close to the minimum estimates for the entire core heat flow. But even What drives if all heat flux near the core-mantle boundary were carried by conduction, a convective dynamo can exist thanks to the inner core. At the inner core boundary, the geodynamo adiabatic temperature profile of the convecting outer core crosses the melting point of iron. The latter increases with pressure more steeply than the adiabatic gradient, which is the reason why the Earth's core freezes from the center rather than from In words... above. As the core cools, the inner core grows with time by freezing iron onto its Vol. III outer boundary. This has two important implications for driving the dynamo. The latent heat that is released upon solidification is an effective heat source, which contributes to the heat budget approximately the same amount as the bulk cooling of the core. The heat flux that originates at the inner core decreases with radius as r^{-2} in the spherical geometry of the fluid core. The adiabatic temperature gradient is roughly proportional to r, because gravity decreases towards the center. Therefore, Or by picture... even if the actual heat flux were slightly less than the adiabatic heat flux near the core-mantle boundary, it must be superadiabatic deeper down. A second, perhaps more important effect is that the light elements in the outer core are preferentially rejected when iron freezes onto the inner core. Hence, they become concentrated in the residual fluid near the inner core boundary. This layering is gravitationally unstable because of the reduced density, which leads to compositional convection that homogenizes the light elements in the bulk of the fluid core. Compositional convection contributes as much as, or more than, thermal convection to the driving of the geodynamo in recent geological times.

the

Ch. 7

p 192

Earth: Internal structure & energetics

- Seismology: Dense core with R_c/R_p=0.55
- Fe only cosmochemically abundant element matching density
- No shear waves in outer core, hence it is liquid
- Solid inner core with 0.35R_c
- ~10% light element (Si, S, O, ...) in outer core, less in inner core
- Earth heat flow 44 TW. Core fraction estimated 3-15 TW
- Core heat flow mostly due to secular cooling

Heliophysics Summer School July 2009

Why Don't Venus or Mars have Dynamos?

- Enough rotation even for Venus
- Conducting fluid core probably
- Lack of convection in core?
 - Mantle convection controls heat flow from core
 - Lack of plate tectonics suggests less efficient cooling of interior and lower heat flux from core
 - No inner core means no latent heat of solidification and no enhancement of lighter material in the outer core

Giant Planets							
		Distance <i>AU</i>	Mass Earth Mass	Radius <i>Earth Radii</i>	Density 1=water	Composition % by mass	
	Jupíter	5.20	318	11.2	1.33	90% H, He	
Ø	Saturn	9.54	95	9.46	0.71	75% H, He	
	Uranus	19.2	14	3.98	1.24	10% H, He Water Ammonia Methane	
	Neptune	30.1	17	3.81	1.67	10% H, He Water Ammonia Methane	

Uranus and Neptune have much less mass

- ≻Lower pressures
- ≻No metallic hydrogen
- Weak & irregular magnetic fields produced in water layer, deep below gas envelope

Interior of Jupiter Using Best Equation of State

Comparison with Earth: Field morphology

- Flux lobes at 60-70° latitude
- Weak flux at poles
- Flux spots of both polarities at low latitude. Expulsion of toroidal field bundles ?
- Westward vortex flow in polar cap

Earth's field at core mantle boundary

Power-controlled field strength

Hypothesis: The magnetic energy density depends on thermodynamically available energy flux, that is the part of the energy flux that can be converted to magnetic energy and can balance ohmic dissipation The field strength is independent of rotation rate, conductivity, viscosity,...

$B^2/2\mu_o \sim f_{ohm} \rho^{1/3} (L/H_T q_c)^{2/3}$

 q_c : convected heat flux, $H_T = c_p/(\alpha g)$: temp. scale height, L: charact. radial length scale, ρ : density, f_{ohm} : ratio ohmic dissipation / total dissipation

```
Heliophysics Summer School July 2009
```

Christensen: Planetary magnetic fields and dynamos

Dynamo Scaling Laws

Vol. III Ch. 7

32

Fig 7.10 Earth Models

Fig 7.11 Planets & Stars

${\bm R_{\text{CF}}}/{R_{\text{p}}} \hspace{-0.5mm} \sim \{ {\bm B_{\text{o}}}^2 \, / 2 \, \mu_o \; \rho_{\text{sw}} \; V^2{}_{\text{sw}} \}^{1/6}$

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
B _o Gauss	.003	.31	4.28	.22	.23	.14
R _{CF} Calc.	1.4 R _M	10 R _E	42 R _J	19 R _s	25 R _U	24 R _N
R _M Obs.	1.4-1.6 R _M	8-12 R _E	60-90 R _J	16-22 R _s	18 R _U	23-26 R _N

Solar wind interaction with planets – Vol. I Ch. 13 also Bagenal 2011

	Mercury	Venus	Earth	Mars	Jupiter	Saturn	Uranus	Neptune	Pluto
Distance from Sun, a_p (A.U.) ^{<i>a</i>}	0.39	0.72	1 ^b	1.52	5.2	9.5	19	30	40
Solar Wind Density ^b (cm ⁻³)	53	14	7	3	0.2	0.07	0.02	0.006	0.003
IMF strength ^C (nT)	41	14	8	5	1	0.6	0.3	0.2	0.1
IMF azimuth angle ^C	23°	38°	45°	57°	80°	84°	87°	88°	88°
Radius, Rp (km)	2,439	6,051	6,373	3,394	71,400	60,268	25,600	24,765	1,170 (±33)
Sidereal spin period (day)	58.6	-243	0.9973	1.026	0.41	0.44	-0.72	0.67	-6.39
Magnetic Moment d (ME)	3-6 x 10 ⁻⁴	<10-5	1	<10-5	20,000	600	50	25	?
Surface Magnetic Field ^{e} B_0 (nT)	250-290	-	30,600	-	430,000	21,400	22,800	14,200	?
$R_{CF}f$ (R _P)	1.6RM	-	10 RE	-	46 RJ	20 RS	25 RU	24 R _N	?
Observed R _{MP} (R _P)	1.5 RM	-	8-12R _E	-	63-92 RJ	22-27 R S	18 RU	23-26 R _N	?

 $a 1 A.U. = 1.5 \times 10^8 \text{ km}$

^b The number density of the solar wind fluctuates by about a factor of 5 about typical values of $n_{SW} \sim 7 \text{ (cm}^{-3}) / a_p^2$]. The mass density of the solar wind is $\rho_{SW} = 1.04 n_{SW}$ (amu cm⁻³)

^c Mean values for the interplanetary magnetic field (IMF) in units of nano-Tesla with spherical components Br, $B\theta$, $B\phi$. The azimuth angle is tan⁻¹($B\phi/Br$). The radial component of the IMF, Br, decreases as $1/a_p^2$ while the transverse component, $B\phi$, increases with distance. ^d M_{Earth} = 7.9 x 10²⁵ Gauss cm³ = 7.9 x 10¹⁵ Tesla m³

MEarm - 7.5 x 10 Gauss cm - 7.5 x 10 10s

 e Magnitude of dipole (see text for references).

 $f R_{CF}$ is calculated using $R_{CF} = \xi (B_o^2 / 2\mu_o \rho V_{SW}^2)^{1/6}$ for typical solar wind conditions of ρ_{SW} given above and $V_{SW} \sim 400$ km s⁻¹ and ξ an empirical factor of ~1.4 to match Earth observations (Walker and Russell 1995).

Dynamics

Dayside magnetopause

- Response to B_{SW} direction
- Solar wind ram pressure

Tail Reconnection

• Depends on recent history of dayside reconnection and state of plasmasheet

Space Weather!

Magnetospheric Dynamics – Vol. I Ch. 13 also Bagenal 2011

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
R_{MP}^{a} (km) V_{SW}^{b} (km/s)	4000	6.5 x 10 ⁴	6 x 10 ⁶	1 x 10 ⁶	6 x 10 ⁵	6 x 10 ⁵
V _{SW} ^b (km/s)	370	390	420	430	450	460
$\begin{array}{c}t_{N-T}^{c}\\R_{T}^{d}(R_{p})\end{array}$	10 s	3 min	4 hr	45 min	20 min	20 min
$R_T^d(R_p)$	3	20	170	40	50	50
R _T ^d (km)	8000	1.3 x 10 ⁵	1.2 x 10 ⁷	2.3 x 10 ⁶	1.3 x 10 ⁶	1.2 x 10 ⁶
V _{rec,1} ^e (km/s)	40	22	16	16	16	16
$V_{\rm rec,2}^{\rm f}$ (km/s)	37	39	42	43	45	46
trec	3 min	1 hr	80 hr	15 hr	8 hr	7 hr
	30	200	1700	400	500	500
V _{co} /V _{rec2}	4 x 10 ⁻⁵	0.04	8	1.3	0.4	0.4
$R_{pp}^{J}(R_p)$	0.03	6.7	350	95	70	70

^a Sub-solar magnetopause distance.

^b V_{SW}=387 (*a*_p/*a*_E)^{0.05} (km/s) from Belcher et al. (1993)

^c Solar wind nose-terminator time: t_{N-T} = R_{MP} / V_{SW}

^d Radius of cross section of magnetotail, approximated as $R_{\rm T} = 2R_{\rm MP}$.

e Reconnection speed assuming 20% reconnection efficiency and vrec ~ 0.2 vsw Bsw/ BMP km/s (e.g. Kivelson 2007)

f Reconnection speed assuming 10% reconnection efficiency and $v_{rec} \sim 0.1 v_{SW}$ km/s

g Reconnection time $t_{rec} = R_T / v_{rec,2}(s)$

h Distance to X-line dx~v SW tree

¹Assumes rotation speed at the magnetopause is ~30% of rigid corotation

J Distance to plasmapause, where corotation is comparable to reconnection flow (e.g. Kivelson 2007)

Solar-wind vs. Rotation-dominated magnetospheres

R_{plasmapause} / R_{Planet} = 6.7 350

95

Plasma Sources

	Mercury	Earth	Jupiter	Saturn	Uranus	Neptune
N _{max} cm ⁻³	~1	1- 4000	>3000	~100	~3	~2
Comp- osition	H ⁺ Solar Wind	O ⁺ H ⁺ lono- sphere	O ⁿ⁺ S ⁿ	O ⁺ H ₂ O ⁺ H ⁺ Enceladus	H ⁺ lono- sphere	H ⁺ N ⁺ Triton Iono- sphere
Source kg / s	?	5	700- 1200	∼20 70- 700?	~0.02	~0.2

Sources of Plasma: Solar Wind + ionosphere mixed (over the poles) into magnetotail and convected sunward

Ion Pick Up

The magnetic field couples the plasma to the spinning planet

Jupiter's Aurora -The Movie Fixed magnetic coordinates rotating with Jupiter Clarke et al. Grodent et al. HST

Main Aurora

- Shape constant, fixed in magnetic co-ordinates
- Magnetic anomaly in north
- Steady intensity

• ~1° Narrow Clarke et al., Grodent et al. HST

Hill 1979

- Outward transport of Iogenic plasma
- \bullet J $_{||}$ transfers load to ionosphere
- Transfer of angular momentum
- limited by ionospheric conductivity Σ

N.B. Lo has units

Coupling the Plasma to the Flywheel

Magnetospheres scaled by stand-off distance of dipole field

	M/M _E	MP _{Dipole}	MP_{mean}	MP_{Range}
Mercury	~8x10 ⁻³	1.4 R _M	1.4 R _M	
Earth	1	10 R _E	10 R _E	
Saturn	600	20 R _s	24 R _s	22-27 * R _s
Jupiter	20,000	46 R _j	75 R _j	63-92 [#] R _J

Inflated magnetospheres of Jupiter & Saturn due to HOT PLASMAS

What process heats the plasma as it moves outwards????

Vasyliunas Cowley et al. Southwood & Kivelson

Hybrid Bx simulations of Kelvin- Helmholtz instability - ions=particles - electrons=fluid	
Peter Delamere, CU Heavy Light	

• Saturn's magnetic field is very symmetric – why are there periodic variations?

• Variable rotation rate?? Changes over "season"

- Current system between poles modulating ionization? Slowly changing with illumination of ionosphere / thermospheric winds??
- North & South ionospheres rotate at different rates??

Plasma sheet shape: forcing

- Global shape of the current and plasma sheet is determined by:
 - Diurnal motion (dipole tilt) / other periodic mechanisms.
 - Centrifugal forcing on plasma offset from the rotational equator.
 - Stresses imposed on the magnetosphere from the solar wind.

Arridge et al. (2011)

- strongly modulated by the solar wind
- open-closed boundary

Clarke et al.

Uranus

Toth et al.

Neptune

Similarly complex as Uranus

Zieger et al.

Mercury & Ganymede

Mercury - Magnetic field detected by *Mariner 10* in 1974

Ganymede - Magnetic field detected by *Galileo* in 1996

 $B_{surface} \sim 1/100$ Earth

Diameter of Earth

Summary

- Diverse planetary magnetic fields & magnetospheres
- Dynamo primarily requires region of liquid conducting material that is convecting – generally limited by heat flow in core
- Earth, Mercury, Ganymede magnetospheres driven by reconnection
- Jupiter & Saturn driven by rotation & internal sources of plasma
- Uranus & Neptune are complex need to be explored!