Particle Acceleration in Shocks

Marty Lee

USA

Particle Acceleration in Shocks

- 1. Introduction
- 2. Parker Transport Equation
- 3. Applications of the Parker Equation
- 4. Diffusive Shock Acceleration (DSA)
- 5. Wave Excitation at Shocks
- 6. Applications of DSA

1. Introduction

23 February 1956 GLE Event

Meyer, Parker and Simpson, 1956

28 September 1961 Event Explorer 12

Bryant, Cline, Desai and McDonald, 1962

Earth's Bow Shock

Tsurutani et al., 1981

CIR Event: Ulysses

Kunow et al., 1999

Pioneer Super Events

Collisionless Shock on 11/12/78: ISEE-3

Tsurutani et al., 1983

Voyager 1 Ions

Decker et al., 2005

"Termination Shock" in Your Sink

The GCR spectrum continues as a power, in energy (index of about -2.7)

Highest energy cosmic rays have the kinetic energy of a major league baseball.

Figure 1. The all particle spectrum of cosmic rays - Cronin, Gaisser, Swordy 1997

The Hairy Ball?

MERIDIONAL PROJECTION

EQUATORIAL PROJECTION

Thomas and Gall, 1984

Distribution Functions

 $F(\mathbf{p}, \mathbf{x}, t)$ (phase-space distribution function)

$$n(\mathbf{x},t) = \int d^3 \mathbf{p} F(\mathbf{p},\mathbf{x},t) \qquad \text{(number density)}$$
$$f(p,\mathbf{x},t) = (4\pi)^{-1} \int d\Omega F(\mathbf{p},\mathbf{x},t)$$

(omnidirectional distribution function)

 $Flux = vFp^2 dp d\Omega$

 $J = Flux / (d\Omega dE) = p^2 F$

(differential intensity)

Vlasov Equation

2. Parker Transport Equation

Cyclotron Resonance Condition

$$\omega - kv_z + \Omega = 0$$

 $kv_z \approx \Omega$

Streaming Anisotropy

Reames et al., 2001

Mason et al., 1999

Parker's "Confusion-Defection" Equation

$$\int UdE = n = \int 4\pi p^2 f dp$$

$$\frac{\partial U}{\partial t} + \frac{\partial}{\partial E} (\mathbf{V} \cdot \nabla p v U/3) + \nabla v \frac{p v C}{3qB^2} \mathbf{B} \times \nabla U - \frac{1}{3} \mathbf{V} \frac{p^3}{v} \frac{\partial}{\partial p} \left(U \frac{v}{p^2} \right) = 0$$

$$\Rightarrow \frac{\partial f}{\partial t} + (\mathbf{V} + \mathbf{V}_D) \cdot \nabla f - \nabla \cdot \mathbf{K} \cdot \nabla f - \frac{1}{3} \nabla \cdot \mathbf{V} p \frac{\partial f}{\partial p} = 0$$

 $\left(\mathbf{E} \cong -c^{-1}\mathbf{V} \times \mathbf{B} \right)$ Parker, 1965

Contours of $\nabla \cdot \mathbf{V} > 0$ and $< \mathbf{0}$

Stochastic Compressions and Rarefactions: Quasi-Linear Theory

$$\frac{\partial f_0}{\partial t} = \frac{1}{v^2} \frac{\partial}{\partial v} \left\{ \frac{v^4}{9} \int_{-\infty}^{\infty} d^3 \mathbf{x}' \int_{-\infty}^{t} dt' G(\mathbf{x}, t; \mathbf{x}', t') \left\langle (\nabla \cdot \delta \mathbf{V}) (\nabla' \cdot \delta \mathbf{V}') \right\rangle \frac{\partial f_0(v, t)}{\partial v} \right\}$$

$$G(\mathbf{x}, t; \mathbf{x}', t') = [4 \pi K (t - t')]^{-3/2} \exp\{-|\mathbf{x} - \mathbf{x}'|^2 [4 K (t - t')]^{-1}\}$$

$$\frac{\partial f_0}{\partial t} = \frac{1}{v^2} \frac{\partial}{\partial v} \left[v^2 D \frac{\partial f_0}{\partial v} \right]$$

Jokipii and Lee, 2010

Stochastic Acceleration

FIG. 2. Coordinate system for calculation of Δc , etc.

$$\frac{\partial f}{\partial t} = \frac{1}{p^2} \frac{\partial}{\partial p} \left(p^2 D(p) \frac{\partial f}{\partial p} \right)$$

$$D(p) = \frac{1}{3} \left\langle V^2 \right\rangle \frac{1}{\lambda} \frac{p^2}{v}$$

 $\lambda \equiv (\pi R^2 N)^{-1}$

Parker and Tidman, 1958

3. Applications of the Parker Equation

Charged Particle Spectrum

Ions not marked by source Energy and timing help separate sources Charge state also: AC singly charged GCR full stripped SEP partially stripped

Solar Modulation of GCR: A Simple Case

 $n = \int 4\pi p^2 f dp, \ \mathbf{V}_D = 0, \ \nabla = \mathbf{e}_r d/dr, \ \partial/\partial t = 0, \ K = K(r), \ \mathbf{V} = \mathbf{e}_r V$

$$\frac{1}{r^2} \frac{d}{dr} \left[r^2 \left(Vn - K \frac{dn}{dr} \right) \right] = 0$$

$$Vn - K\frac{dn}{dr} = \frac{C}{r^2} \qquad \qquad C = 0$$

$$n(r) = n(r = R) \exp\left(-\int_{r}^{R} \frac{Vdr'}{K(r')}\right)$$

Solar Energetic Particle Event

Reames et al., 2001

SEP Propagation: A Simple Case

 $\mathbf{V} \cong \mathbf{0}, \ \mathbf{V}_D \cong \mathbf{0}, \ \mathbf{K} = \mathbf{K}(p), \ \nabla = \mathbf{e}_r \partial / \partial r$

$$\frac{\partial f}{\partial t} = K \nabla^2 f + f_0(p) \delta(\mathbf{x}) \delta(t)$$

$$f(p,r,t) = \frac{f_0(p)}{[4\pi K(p)t]^{3/2}} \exp\left(-\frac{r^2}{4K(p)t}\right)$$

Pickup Ion Mediated Termination Shock

Interstellar Pickup Ion Transport

$$\mathbf{V}_D \cong 0, \ \mathbf{K} \cong 0, \ \mathbf{V} = \mathbf{e}_r V, \ \partial/\partial t = 0$$

$$\frac{\partial f}{\partial t} + \mathbf{V} \cdot \nabla f - \frac{1}{3} \nabla \cdot \mathbf{V} v \frac{\partial f}{\partial v} = \beta_0 \left(\frac{r_0}{r}\right)^2 n_g(\mathbf{x}) \frac{\delta(v - V)}{4\pi v^2}$$

$$f(r, v < V) = \frac{3\beta_0 r_0^2}{8\pi V^{5/2}} \frac{1}{rv^{3/2}} n_g \left[r(v/V)^{3/2}, \theta, \phi \right]$$

4. Diffusive Shock Acceleration

Diffusive Shock Acceleration

$$V_{z}\frac{df}{dz} - \frac{d}{dz}\left(K_{zz}\frac{df}{dz}\right) - \frac{1}{3}\frac{dV_{z}}{dz}p\frac{df}{dp} = Q\delta(z)\delta(p-p_{0})$$

$$f(z < 0) = \frac{3Q}{(V_u - V_d)p_0} \left(\frac{p}{p_0}\right)^{-\beta} \exp\left(\frac{Vz}{K}\right)$$
$$f(z > 0) = \frac{3Q}{(V_u - V_d)p_0} \left(\frac{p}{p_0}\right)^{-\beta} \qquad \beta = \frac{3X}{(X - 1)}$$

Fisk, 1971;....

Axford, Leer and Skadron, 1977 Krymsky, 1977 Blandford and Ostriker, 1978 Bell, 1978

Planar Stationary DSA

First-Order Fermi Acceleration

"Shock Drift" Acceleration

Pesses, 1981

Diffusive Shock Acceleration

Anisotropy Limitation

$$\frac{|\mathbf{S}|}{vf} = \frac{V}{v} \left[1 + \frac{K_A^2 \sin^2 \theta + (K_{\parallel} - K_{\perp})^2 \sin^2 \theta \cos^2 \theta}{(K_{\parallel} \cos^2 \theta + K_{\perp} \sin^2 \theta)^2} \right]^{1/2}$$

$$K_{\parallel} >> K_{\perp}, K_A$$
:

$$\Rightarrow \frac{|\mathbf{S}|}{vf} = \frac{V}{v\cos\theta}$$

Giacalone and Jokipii, 1999

Quasi-Perpendicular Shock Simulation: Be Careful!

Giacalone, 1999

Shock Modification

$$\partial/\partial t = \partial/\partial y = \partial/\partial z = \mathbf{V}_D = \mathbf{Q} = \mathbf{0}$$

$$V\frac{dP_c}{dx} - \frac{d}{dx}\left(\overline{K}\frac{dP_c}{dx}\right) + \gamma_c \frac{dV}{dx}P_c \cong 0$$

$$\frac{d}{dx}(\rho V) = 0$$

$$\rho V \frac{dV}{dx} = -\frac{d}{dx} \left(P_g + P_c \right)$$

$$V\frac{dP_g}{dx} + \gamma_g \frac{dV}{dx}P_g = 0$$

5. Wave Excitation at Shocks

Instability Mechanism

Upstream Waves I

Tsurutani et al., 1983

Upstream Waves II

Hoppe et al., 1981

Cyclotron Resonance Condition

$$\omega - kv_z + \Omega = 0$$

 $kv_z \approx \Omega$

$$\omega_s \sim k V_{sw} \sim \Omega(V_{sw} / v_z) \propto B$$

Upstream Waves at Planetary Shocks

Russell et al., 1990

Pickup Ion Excited Waves at Comet G-Z

Wave Excitation - I

$$-V\partial I_{\pm}/\partial z = 2\gamma_{\pm}I_{\pm}$$

$$I \cong I_{+} = I_{+}^{\circ}(k) + \frac{4\pi^{2}}{k^{2}} \frac{V_{A}}{V} / \Omega_{p} / m_{p} \cos \psi \int_{/\Omega_{p}/k/}^{\infty} dv v^{3} (1 - \frac{\Omega_{p}^{2}}{k^{2}v^{2}}) (f_{p} - f_{p,\infty})$$

$$f_{p,\infty} = \overline{n}_p (4\pi v_{p,0}^2)^{-1} \,\delta(v - v_{p,0}) + \overline{C} v^{-\gamma} S(v - \overline{v}_{p,0})$$

Wave Excitation - II

$$I = I_{+}^{\circ} + \frac{4\pi^2}{k^2} \frac{V_A}{V} / \Omega_p / m_p \cos\psi \int_{|\Omega_p/k|}^{\infty} dv v^3 (1 - \frac{\Omega_p^2}{k^2 v^2}) \cdot$$

$$\cdot \exp\left\{-V\int_{0}^{z} dz \left[\cos^{2}\psi \frac{v^{3}}{4\pi} \frac{B_{0}^{2}}{\Omega_{p}^{2}}\int_{-1}^{1} d\mu \frac{/\mu/(1-\mu^{2})}{I(\Omega_{p}\mu^{-1}v^{-1})} + \sin^{2}\psi K_{\perp}\right]^{-1}\right\}$$

Wave Excitation - III

 $\beta = 7; I_0(k) \approx 0$

Waves Upstream of Earth's Bow Shock

$$W_B = \frac{1}{3} \frac{V_A(\hat{e}_b \cdot \hat{e}_g)}{V_{sw}(\hat{e}_z \cdot \hat{e}_g) - V_A(\hat{e}_b \cdot \hat{e}_g)} W_p$$

Gordon et al., 1999

Upstream Waves

Hoppe et al., 1981

SLAMS

Lucek et al., 2008

Streaming instability driven by cosmic rays Lucek & Bell 2000

B field lines, t = 0

6. Applications of DSA

Acceleration at a CME-Driven Shock

Lee, 2005

CIR Geometry

Corotating Ion Events

$$f \sim (r/r_s)^{(2/(R-1))+V/(\kappa_0 v)}$$

× $v^{-3R/(R-1)} \exp[-6\kappa_0 v R/(V(R-1)^2)]$

Fisk and Lee, 1980

Reames et al., 1997

Blunt Shock: 2D Simulation for ACR energies

ACR flux increases into the Heliosheath

Spectrum gradually unfolds

Stone et al., 2008

Evidence for magnetic field amplification at shock (Vink & Laming, 2003; Völk, Berezhko, Ksenofontov, 2005)

Chandra observations

NASA/CXC/Rutgers/ NASA/CXC/Rutgers/ NASA/CXC/NCSU/ NASA/CXC/MIT/UMass Amherst/ J.Hughes et al. J.Warren & J.Hughes et al. S.Reynolds et al. M.D.Stage et al.