Theory & Modeling of Solar Eruptions

H α disk (flare ribbons)

$H\alpha$ limb (prominence)

X-ray (flare loops)

Large Solar Eruptions

Light Curves

CME/Flare Energetics

kinetic energy of mass motions: $\approx 10^{32}$ ergs heating / radiation: $\approx 10^{32}$ ergs

work done against gravity $\approx 10^{31}$ ergs

volume involved:

$$\gtrsim (10^5 \text{ km})^3$$

Туре	Observed Values	Energy Density
kinetic $(m_p n V^2)/2$	$n = 10^9 \text{ cm}^{-3}$ V = 1 km/s	10^{-5} ergs/cm ³
thermal <i>nkT</i>	$T = 10^{6} \mathrm{K}$	0.1 ergs/cm ³
gravitational <i>m_pngh</i>	$h = 10^5 \mathrm{km}$	0.5 ergs/cm ³
magnetic $B^2/8\pi$	$B = 100 {\rm G}$	400 ergs/cm ³

How is Energy Stored?

 $\beta = 10^{-3}$ $\nabla p \approx 0$ $\mathbf{j} \times \mathbf{B} \approx 0$

emerging flux model

sheared magnetic fields

How Much Energy is Stored?

free magnetic energy $\approx 50\%$ of total magnetic energy

Inertial Line-Tying

Plasma below the photosphere is both massive and a good conductor.

Evolution of the photosphere is slow compared to time scale of eruptions.

Photospheric boundary condition:

$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} = \mathbf{0} \ .$$

Photospheric convection is negligible

B normal to surface is fixed.

Transient Coronal Holes as Seen by EIT

Reconnection Electric Fields

newly reclosed flux:

$$\Phi_B = \iint_{\sigma} B_z \, dx dy$$

global reconnection rate:

$$\mathbf{E} \cdot \mathbf{d} \mathbf{l} = \frac{d\Phi_b}{dt}$$

CME/Flare Reconnection Rate

Observed Reconnection Rate for X3 Flare

Substorm Reconnection Rate

$$\int_{\mathbf{C}_1} \left[\mathbf{E}_{\mathbf{rec}} \right]_0 \cdot \mathbf{dl} = \int_{\mathbf{C}_2} B(V_n - U_n) dl$$

Flux Injection Models

(e.g. Chen 1989)

During injection energy flows through photosphere.

Injection models predict large surface flows which are never observed.

Loss of Equilibrium Model

Energy Release in 2D Model

Aly - Sturrock Paradox

Trajectories

Numerical Simulation of Critical Point Configuration

Chromospheric Evaporation

Evaporation Doppler Shift Puzzle

2D Asymmetric Quadrupole Model

test of "tether-cutting" concept

Equibrium Manifold in 5D Parameter Space of Model

- **1.** normalized radius of flux rope
- 2. normalized main arcade field
- **3.** new emerging flux strength (NEF)
- 4. normalized depth of NEF
- **5.** normalized distance of NEF

2nd order umbelic catastrophe

Basic Principles I

Basic Principles II

 $I \propto 1/[R \ln(R/r_0)]$

Flux Conservation:

How to Achieve Equilibrium

However, such an equilibrium is unstable!

How to Achieve a Stable Equilibrium

SAIC CME Simulation

Linker et al. (2001)

3D Loss-of-Equilibrium Model

Titov & Démoulin (1999)

3D Line-Tied Solution by Method of Images

Line-Tied Evolution

Flux-Rope Footprint

images courtesy of B. Kliem

Transient Coronal Holes as Seen by TRACE

Forces Acting on Flux Rope

current density

Kliem & Török (2004)

Simulation of Kliem & Török

- 1. line current replaced by quadrupole
- 2. subcritical twist for helical kink
- 3. torus center near surface

initial state ($\mathbf{j} = 0$) t_{Alfvén} 0.1 1. free magnetic energy 0.075 3 magnetic energy build-up energy 0.05 2. reconnected flux 0.025 at upper x-line post eruption 0 50000 100000 ົດ time 3. 0 lower x-line appears

What is the Trigger Mechanism in the Breakout Model?

Role of Reconnection in the Breakout Model

Simulation of Flux-Rope Eruption in 3D MHD

top view (XRT)

side views

courtesy of John Linker at Predictive Science

Flux Rope Emergence & Eruption

3D simulations of Fan & Gibson (2006)

Flux Ropes Are Characteristic of Low β Plasmas

prominence plasma $\beta \ll 1$

$$\nabla P \approx 0 : \mathbf{j} \times \mathbf{B} \approx 0 \qquad \mathbf{j} \parallel \mathbf{B}$$

j along **B** produces twist

flux rope defined as enough twist to produce inverse polarity

(about 1 turn)

blue: flux ropes
red: flux ropes that erupted

Some Unanswered Questions

1. How are stressed magnetic fields formed?

magnetic energy storage —

What determines the rate of reconnection?
kinetic processes –
turbulence –

3. To what extent are flares & CMEs predictable?

- loss of equilibria –
- loss of stability —