Observations of solar and stellar eruptions, flares, and jets

H.S. Hudson Space Sciences Lab, UC Berkeley

- Flare Phases
- Flare Phenomena
- Flare and CME Energetics
- Analogs: stellar, solar, terrestrial
- How to observe magnetic reconnection
- Conclusions

A flare/CME seen in EUV and X-rays

Red RHESSI 6-12 keV, blue 50-100 keV, gold images TRACE 195A

Boulder 23 July 2008

An IR movie from the "opacity minimum"

3/<42

A TRACE movie that shows everything

Where does this all fit in?

Vernazza et al. 1981 ("VAL-C")

- Two views of the chromosphere/transition region
- But how about the corona?

Outline

Flare Phases

- Flare Phenomena
- Flare and CME Energetics
- Analogs: stellar, solar, terrestrial
- How to observe magnetic reconnection
- Conclusions

Impulsive phase and gradual phase: The Neupert Effect

Impulsive phase:

- > few tenths of the total flare energy released (up to 10^{32} ergs)
- Significant role for non-thermal electrons
- CME acceleration

Flare Phases

Benz, 2002

Boulder 23 July 2008

Impulsive Phase: the thick-target model

Collisional thick target model has dominated interpretations of flare nonthermal emission for > 3 decades.

Assumes hard X-ray emission is primarily electron-proton bremsstrahlung from electron beam, accelerated in the corona and stopped in chromosphere

Boulder 23 July 2008

Gradual phase: reconnection model

- Ribbon separation
- Loop temperature sequence
- Outer edge spectral signature
- Coronal cusp development
- Other signatures

Outline

- Flare Phases
- Flare phenomena
- Flare and CME energetics
- Analogs: stellar, solar, terrestrial
- How to observe magnetic reconnection
- Conclusions

X-Rays

X-rays observed by (e.g.) RHESSI are primarily electron-proton bremsstrahlung from energetic electrons (>15 keV)

- Non-thermal bremsstrahlung: $E_e >> kT$ and photon spectrum $I_{h\nu} \sim (h\nu)^{-\gamma}$
 - not a significant energy loss: ~ 10^{-5} of the energy radiated as X-rays
- Thermal bremsstrahlung: $E_e \sim kT$ and photon spectrum $I_{hv} \sim e^{-hv/kT}$
 - significant energy loss from electrons in a hot gas (1-10% of flare energy)
- Free-free, free-bound, and bound-bound (line) transitions

12/<42

X-rays and gamma-rays

Gamma-rays

Nuclear de-excitation lines caused by bombardment of nuclei by <u>10-30 MeV protons;</u> de-excitation also via neutrons

Production of nuclear de-excitation lines

Neutron capture line at 2.23 MeV - n(p,γ)D

- shows location of <u>10s of MeV protons</u>
- direct detection of neutrons also possible

 $\Pi_0 \rightarrow 2\gamma$ decay continuum shows ~ 100 MeV; e⁺ annihilation line (511 kev) - complicated!

Boulder 23 July 2008

Radio waves

Basic opacity (hence emissivity) of the plasma is the *free-free process (bremsstrahlung)*, which depends on $n_e n_i$, and T_e .

Fast electrons of the impulsive phase also emit *synchrotron emission*. This depends non-linearly on several parameters including **B**.

Upward and downward-going *beams* sometimes observed, occurring at peak time of HXR emission. *Spectrograms* reveal the dynamics.

frequency

Outline

- Phases
- Phenomena
- Energetics
- Analogs: stellar, solar, terrestrial
- How to observe magnetic reconnection
- Conclusions

Thick target energetics / beam fluxes

In thick-target theory, can use HXR photon spectrum to calculate parent electron spectrum in chromosphere (Brown 1971).

The inferred requirement on electron number is - 10^{34} - 10^{36} electrons s⁻¹ (ie coronal volume of 10^{27} cm³, n = 10^9 e⁻ cm⁻³ should be emptied in ~10s)

Beam density can be inferred using white-light footpoint areas as a proxy for beam 'area'.

Boulder 23 July 2008

Ribbons in the impulsive phase

UV/EUV, H_{α} and (sometimes) optical emission demonstrate excitation of lower atmosphere

Yohkoh HXR contours on 195A emission

Optical/UV/EUV emission from conduction, "precipitation", or waves

White-light luminosity can be directly measured.

Fletcher & Hudson 2001

Role of 'white light' in total flare luminosity

- Substantial fraction of total flare energy radiated in broadband UV-IR
- In Oct-Nov 2003 flares, integrated irradiance ~ 3 6 $\times 10^{32}$ erg
- Spectral modelling \Rightarrow 40-50% of this at $\lambda \ge 1900$ Å, ~ 100 times soft X-ray irradiance

Total Irradiance Monitor on SORCE

Woods et al. 2005

• TIM shows an impulsive component

Particle acceleration in the impulsive phase

- The 10-100 keV electrons that emit hard X-rays contain a large fraction of the total flare energy. This is radiated in the UV and detected now in the total irradiance
- Although γ-ray observations are much less sensitive, it appears that 10-100 MeV proton acceleration is equally important
- The CME is accelerated at the impulsive phase, and its energy also may dissipate via "solar cosmic ray" acceleration in the accompanying shock wave
- Particle acceleration is the most important theoretical problem in solar flare research

Magnetic energy storage

- Need to find locus of $\bm{B}^2\!/8\pi$
- Have force-free condition
 Curl(B) = α(x,y)B
- Extrapolation of photospheric field observations
 - Potential (α = 1)
 - Linear force-free (α constant)
 - Non-linear force-free NLFFF (α general)

 $\mathsf{B}_{\mathsf{los}}$ in a solar active region and the 50% contour of \mathbf{B}^2

Integral distribution of stored energy (NLFFF vs potential) in height

low altitudes and may reside in a filament channel.

Outline

- Phases
- Phenomena
- Energetics
- Analogs: stellar, solar, terrestrial
- How to observe magnetic reconnection
- Conclusions

A powerful solar-paradigm stellar flare

Flares and aurorae

Cartoons by Dungey

Analogy pro

Analogy con

- Flare ribbons <=> conjugate polar caps
- Magnetic reconnection/plasmoid formation
- Non-thermal particles
- No large convective electric field in the corona
- No neutral atmosphere below the corona
- Equatorwards edges vs. ribbon outer edges

Likely stellar analogs: dMe stars

Boulder 23 July 2008

26/<42

Extreme stellar analogs

- A. "Magnetic duplicity" (Uchida & Sakurai)
- B. The X-wind model for T Tauri (Shu)
- C. Magnetars (Duncan)

These models all seek different ways to drive currents through the stellar environment and thereby to stress the magnetic field to form an energy reservoir

Are there other solar paradigms?

- X-ray jets
- Microflares/nanoflares
- "Extended flare" phenomena
- Masuda flare
- Non-thermal ejecta
- Shock waves
- Double layers
- Coronal thick-target events
- Impulse-response events

X-ray Jets (H α surges, sprays)

From a Yohkoh Science Nugget

http://solar.physics.montana.edu/nuggets/

Other Jets

Cirtain et al. ???? Hinode

Heyvaerts et al. 1977

Shibata et al. 2007

30/<42

Boulder 23 July 2008

Microflares and nanoflares

RHESSI microflares, 2002-2007

Parker's nanoflare cartoon

- Major flares have ~10³² ergs total energy
- Microflares (>10²⁶ ergs) occur in active regions
- Nanoflares are conjectural and weaker still

Outline

- Phases
- Phenomena
- Energetics
- Analogs: stellar, solar, terrestrial
- How to observe magnetic reconnection
- Conclusions

What do we mean by "magnetic reconnection"?

- The solar corona has low plasma beta: beta = 2nkT/(B²/8π)
- It appears to have a cellular structure, with magnetic domains separated by current sheets
- A flare may be associated with a restructuring of such domains
- The microphysics can be studied in the laboratory and in space plasmas

Above MHD Simulation

Below

Abbett, 2008

Beta in the solar corona

Plasma beta from a G. Withbroe solar-wind model *n.b. beta can be much lower in active regions*

Reconnection cartoons

Reconnection microphysics

Coronal acceration?

'Volumetric' acceleration:

Wave-particle turbulence (e.g. Larosa et al, Miller et al,

Petrosian)

Stochastic current sheets (e.g. Turkmani et al)

Collapsing traps (e.g. Somov & Bogachev)

Betatron acceleration (e.g. Brown-Hoyng, Karlicky-Kosugi)

Diffusive shock or shock drift acceleration (e.g. Tsuneta & Naito, Mann et al)

Reconnecting X-line or current-sheet acceleration

Multiple X-lines/islands (e.g. Kliem, Drake)

Single macroscopic current sheet (e.g. Litvinenko & Somov, Somov & Kosugi)

Problems for coronal acceleration

- Location (fast shock A, slow shock B, current sheet C are any of these real?)
- The "number problem" where to get the particles?
- How to get "flare particles" into the heliosphere?
- Beam dynamics return currents and inductive effects

New non-MHD ideas

Fletcher & Hudson 2008

http://solarmuri.ssl.berkeley.edu/~hhudson/cartoons/

Outline

- Flare Phases
- Flare Phenomena
- Flare and CME Energetics
- Analogs: stellar, solar, terrestrial
- How to observe magnetic reconnection
- Conclusions

Most crucial future observations

- Flare-associated field variations
- The deepest layers: γ-rays, IR, seismic waves
- Particle acceleration

Most crucial future observations

- Flare-associated field variations
- The deepest layers: γ-rays, IR, seismic waves
- Particle acceleration
- In-situ corona