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Energy Analyzers

• To measure (select) the energy of low energy (≤ ~100 keV/charge) charged particles 
electrostatic and magnetic energy analyzers are used in space instruments

• Magnetic analyzers are bulky and heavy compared to electrostatic analyzers, and 
require magnetic shielding to prevent interference with magnetic field measurements on 
the same spacecraft. 

• Electrostatic analyzers often use high voltages that require special care to prevent discharge

• Incorporating UV suppression is essential since most detector systems (SSDs, CEMs, 
MCPs) placed behind energy analyzers are sensitive to UV

• Three types of electrostatic analyzers are discussed
- Retarding Potantial Analyzer (RPA) for low energies (few eV to ~ few keV/e)
- Spherical and Cylindrical Section Analyzers (ESA) for medium energies 

(~ 0.1 to ~20 keV/e
- Small-Angle Deflection Analyzers (SADA) for high energies (up to a few MeV/e)

• Many different configuration of analyzers are used, but they all operate by using various 
electric field configurations to allow only particles in a selected energy/charge (ε) 
window(ε1 < ε < ε2) to pass through the system



• The RPA consists of three highly transparent metal 
grids, an aperture stop (to define the acceptance 
geometry) and support structure

• It is a simple device with a large acceptance area and 
geometrical factor

• Its disadvantage are
- upper energy range is limited to ~6 to 8 keV/e
- UV suppression is very difficult

• The energy of incoming ions is determined by 
applying to the central metal grid a time-varying, 
dc-biased square wave potential that 
varies from V1 to V1 + ∆V (V and ∆V can be changed)

• Ions with 'perpendicular' energies, mv2
⊥< 2qV1, are 

rejected, those with mv2
⊥ > 2q(V1 + ∆V) are accepted 

and ions with energies in between are either accept or 
reject depending on whether the modulating voltage is 
in its high or low step
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Spherical and Cylindrical Section Analyzers (ESA)
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• Charged particles are deflected by the 
electric field between the inner 
and outer concentric spherical (or 
cylindrical) section electrodes

• Only particles having the right energy 
per charge ε and arrival directions will 
pass through the entrance aperture and 
ESA to be detected without first 
hitting one of the electrodes

• The mean energy per charge ε of the 
particle arriving at the detector is 

	 ε ≈ 0.5(Vout-Vin)/ln(Rout/Rin) ≈
	 0.5ΔV/(ΔR/<R>)
	ΔR = Rout– Rin and <R> = (Rout+ Rin)/2 

• The energy per charge resolution is
Δε /ε ≈ ΔR/<R>

• The acceptance angle α is also
α ≈ ΔR/<R>

• The analyzer constant K is
K = ε/ΔV ≈ 0.5<R> /ΔR

• An analyzer constants of 20 can 
be achieved with <R> = 20 cm 
and a gap between the plates
ΔR = 0.5 cm
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Small Angle Deflection Analyzer (SADA)

• Charged particles pass through a multi-slit collimator (which defines their incoming 
directions) and are then deflected by the electric field between the upper and lower
deflection plates

• Only particles having the right energy per charge ε will pass through the narrow slit and
are detected (alternatively, a position-sensitive detector could be used to measure ε )

• The mean energy per charge ε of the particle arriving at the detector is 
ε ≈ (Vup-Vlo)L2/(4hδ) where L and h are average length and separation of deflection plates

• The energy resolution is Δε /ε ≈ Δδ/δ where Δδ is the slit width 

• The analyzer constant K = L2/(4hδ) and the acceptance angle α ≈ h/(2L)

The main advantage of a 
SADA is that particles up to 
several MeV/charge can be 
deflected since K can be 
large and large deflection 
voltages can be supported

UV trapping is effective 



Time-of-flight (TOF) – Energy detector

• Measure time-of-flight,τ, between foil and detector separated by L (typically ~ 10 cm)
• Measure energy E of particles in the detector

Particle mass                       m = 2E•(τ/d)2

mass resolution (Δm/m)2 = (ΔE/E)2 + (2Δτ /τ)2 + (2Δd/d)2

typical resolutions ΔE = 35 keV; Δτ = 150 ps
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