Theory & Modeling of Solar Eruptions

H α disk (flare ribbons)

X-ray (flare loops)

Large Solar Eruptions

QuickTime[™] and a Video decompressor are needed to see this picture.

Inertial Line-Tying

Plasma below the photosphere is both massive and a good conductor.

Evolution of the photosphere is slow compared to time scale of eruptions.

Photospheric boundary condition:

$$\mathbf{E} = -\mathbf{V} \times \mathbf{B} = \mathbf{0} .$$

Photospheric convection is negligible

B normal to surface is fixed.

CME/Flare Energetics

kinetic energy of mass motions: $\approx 10^{32}$ ergs heating / radiation: $\approx 10^{32}$ ergs

work done against gravity $\approx 10^{31}$ ergs

volume involved: $> (10^5 \text{ km})^3$

```
energy density:
\leq 100 \text{ ergs/cm}^3
```

Туре	Observed Values	Energy Density
kinetic $(m_p n V^2)/2$	$n = 10^9 \text{ cm}^{-3}$ V = 1 km/s	10^{-5} ergs/cm ³
thermal <i>nkT</i>	$T = 10^{6} \mathrm{K}$	0.1 ergs/cm ³
gravitational <i>m_pngh</i>	$h = 10^5 \text{ km}$	0.5 ergs/cm ³
magnetic $B^2/8\pi$	B = 100 G	400 ergs/cm ³

How is Energy Stored?

 $\beta = 10^{-3} \qquad \nabla p \approx 0 \qquad \mathbf{j} \times \mathbf{B} \approx 0$

Force-free fields: $\mathbf{j} \parallel \mathbf{B}$

Current sheets:

sheared magnetic fields

emerging flux model

How Much Energy is Stored?

 $B_{from\ corona} \approx B_{from\ photosphere}$

$H\alpha$ image

from Gaizauskas & Mackay (1997)

free magnetic energy $\approx 50\%$ of total magnetic energy

QuickTime™ and a YUV420 codec decompressor are needed to see this picture. Flux Injection Models

(e.g. Chen 1989)

During injection energy flows through photosphere.

> 10 km/sec for > 10 minutes

Injection models predict large surface flows which are never observed.

Loss of Equilibrium Model

x

Energy Release in 2D Model

Aly - Sturrock Paradox

Numerical Simulation of Critical Point Configuration

Chromospheric Evaporation

QuickTime™ and a Animation decompressor are needed to see this picture.

Evaporation Doppler Shift Puzzle

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

2D Asymmetric Quadrupole Model

NEF

test of "tether-cutting" concept

Equibrium Manifold in 5D Parameter Space of Model

3D "cross section"

- **1.** normalized radius of flux rope
- 2. normalized main arcade field
- **3.** new emerging flux strength (NEF)
- 4. normalized depth of NEF
- 5. normalized distance of NEF

2nd order umbelic catastrophe

Basic Principles I

Basic Principles II

Flux Conservation:

 $I \propto 1/[R \ln(R/r_0)]$

How to Achieve Equilibrium

However, such an equilibrium is unstable!

How to Achieve a Stable Equilibrium

3D Line-Tied Solution by Method of Images

Line-Tied Evolution

Forces Acting on Flux Rope

Effect of Line Current on Twist

current density

QuickTime™ and a GIF decompressor are needed to see this picture. QuickTime™ and a Photo decompressor are needed to see this picture.

Kliem & Török (2004)

Simulation of Kliem & Török

QuickTime™ and a GIF decompressor are needed to see this picture.

- 1. line current replaced by quadrupole
- 2. subcritical twist for helical kink
- 3. torus center near surface

SAIC CME Simulation

QuickTime™ and a Graphics decompressor are needed to see this picture.

Linker et al. (2001)

QuickTime™ and a BMP decompressor are needed to see this picture.

What is the Trigger Mechanism in the Breakout Model?

Role of Reconnection in the Breakout Model

QuickTime[™] and a decompressor are needed to see this picture.

Flux Rope Emergence & Eruption

QuickTime™ and a BMP decompressor are needed to see this picture.

QuickTime[™] and a GIF decompressor are needed to see this picture.

3D simulations of Fan & Gibson (2006)

Some Unanswered Questions

How are stressed magnetic fields formed?
 magnetic energy storage —

2. What determines the rate of reconnection?

- kinetic processes —
- turbulence —
- **3.** To what extent are flares & CMEs predictable?
 - loss of equilibria —
 - loss of stability —