Magnetosphere Lab

A Tour of the Magnetosphere with CCMC Models

Go to the CCMC web site http://ccmc.gsfc.nasa.gov

Community
Coordinated
Modelinc
Center

Click "View Model Run Results"

Nats

About Us Space Weather Models at CCMC \mid Request A Model Run \mid View Model Run Results \mid Experimental Home | Stakeholders| Steering Committee | GSFC Staff | Publications | Meetings and Workshops | Concept of Operations

CCMC Mission Statement

The CCMC is a multi-agency partnership to enable, support and perform the research and development for next-generation space science and space weather models.

Space Weather Explorer (SWX) Now

 Available at CCMCCCMC now has additional 3 D visualization options available for BATSRUS/SWMF and UCLA-GGCM/OpenGGCM runs. The new visualizations, created using Space Weather Explorer (an OpenDX-based application) can all be exported as VRML. New plot modes include 3D flowlines as tubes, slices and surface plots both with and without contour lines (shown in ${ }_{3} \mathrm{D}$), and combinations of flowlines and slice/surface plots. Read on

CCMC Services

- We provide, to the scientific community, access to modern space research models
- We test and evaluate models
- We support Space Weather forecasters
- We support space science education

Find out more

The CCMC website has undergone extensive redesign, with some of the pages renamed in the process. If you are unable to locate a previously bookmarked page or have difficulties navigating the redesigned website, please contact the CCMC staff.

View Run Results

Runs on Request Results

View the results of your requested run as well as the results of runs submitted by other users. If you use the results from the Runs on Request in a scientific publication or presentation, please acknowledge the CCMC and the originators of the computational model. For more details see the CCMC Publications Policy. Note: For tracking purposes for our government sponsors, we ask that you notify the CCMC whenever you use CCMC results in scientific publications or presentations by emailing CCMC .

Solar Models
Runs Results

Heliosphere

Inner Magnetosphere Models Results

Click "Global Magnetosphere Models Results"

Click "General purpose runs for education and research" then sort by "IMF Clock Angle"

Global Magnetosphere Simulation Results

- List all Runs on Request
- List simulations with modeled conditions
- List simulations of real events
- General purpose runs for education and research

Search the database for the string: (you can search for multiple strings by seperating them using <AND> or <OR>, i.e. 2006 <AND>BATSRUS will search for 2006 and BATSRUS)
In All Columns
or
In These Columns (Key words automatically included, feel free to choose multiple columns):

\square Run Number	\square Surname $\quad \square$ Model	\square Event Date $\quad \square$ Run Type
\square Request Date	\square Conductance Model	\square Corotation
Do you want to perform an exact search: O Yes	© No	Find it!

-Note options and open BATSRUS zero IMF
Sort Model Vx IMF Clock Angle

SW Density (N)
IMF Magnitude (|B|)
IMF Bz IMFBy Conductance Model

Total Number of Runs in the Database: 772
Number of Educational Runs in this Database: 34

| Model | Model Version | V_{x} | N | \|B| | IMF
 Clock
 Angle | $\mathbf{B}_{\mathbf{x}}$ | By | B_{z} | Conductance Model | iploe Tilt | Run Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OpenGGCM | 2.1-1 | -400.00000 | 5,00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=5$) | 000 | CCMC_CCMC_111605_2 |
| BATSRUS | v7.73 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 35-00 | CCMC_CCMC_080306_5 |
| BATSRUS | v7.73 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_053106_1 |
| OpenGGCM | 2.1-1 | -400.00000 | 5-00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | $\begin{gathered} \text { uniform } \\ (\mathrm{p}=5 ; \mathrm{h}=5) \end{gathered}$ | 0.00 | CXMC_CCMC_053006_2 |
| BATSRUS | v7.73 | -400.00000 | 500000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | uniform $(p=5 . \mathrm{h}=0$) | 0.00 | CCHC_CCMC $053006=$ |
| OpenGGCM | 2.1-1 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | $\begin{gathered} \text { uniform } \\ (\mathrm{p}=5 ; \mathrm{h}=5) \end{gathered}$ | 35.00 | CCMC_CCMC_080306_6 |
| OpenGGCI | 2.1-1 | -400.00000 | 5-00000 | 20.00000 | 0.00000 | 0.00000 | 0.00000 | 20.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=5$) | 0.00 | 1 |
| OpenGGCM | 2.1-1 | -400.00000 | 30.00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5$) | 0.00 | CCMC_CCMC_112305_1 |
| BATSRUS | v7.73 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5$) | 0.00 | CCMC_CCMC_111705_1 |
| BATSRUS with RCM | v7.73 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5)$ | 0.00 | CCMC_CCMC_111605_1 |
| BATSRUS | v7.73 | -1000.00000 | 30.00000 | 5.00000 | 180.00000 | 0.00000 | 0.00000 | -5.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_020906_2 |
| BATSRUS | v7.73 | -400.00000 | 5-00000 | 20.00000 | 180.00000 | 0.00000 | 0.00000 | -20.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_021606_1 |
| BATSRUS | v7.73 | -400.00000 | 15.00000 | 20.00000 | 180.00000 | 0.00000 | 0.00000 | -20.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_021606_2 |
| BATSRUS with RCM | v7.73 | -400.00000 | 5-00000 | 5.00000 | 180.00000 | 0.00000 | 0.00000 | -5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5$) | 0.00 | CCMC_CCMC_111605_5 |
| BATSRUS | v7.73 | -400.00000 | 5-00000 | 40.00000 | 180.00000 | 0.00000 | 0.00000 | -40.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_060906_3 |
| OpenGGCM | 2.1-1 | -400.00000 | 5-00000 | 40.00000 | 180.00000 | 0.00000 | 0.00000 | -40.00000 | $\underset{(\mathrm{p}=5 ; \mathrm{h}=5)}{\text { uniform }_{2}}$ | 0.00 | CCMC_CCMC_060906_4 |

CCMC_CCMC_053006_1

Title/Introduction:
Key Word: educational
3D MHD Model: BATSRUS
Simulation With Modeled Conditions
Inflow Boundary Conditions: Fixed
Start Time: 2000/01/01 00:00
End Time: 2000/01/01 02:30
Dipole Tilt at Start in X-Z Plane: o.o deg.
Dipole Tilt in Y-Z GSE Plane: o.o deg.
Dipole Update With Time: no
Ionospheric Conductance: uniform $(5,0)$
No Corotation Velocity is Applied at The Inner Boundary.
Radio Flux 10.7 cm : 150.
Coordinate System for the Output: GSM
Initial Solar Wind (SW) Parameters in GSM Coordinates:
SW Density: 5 . n/cc
SW Temperature [Kelvin]: 232100. Kelvin
X Component of SW Velocity: -400. km/sec
Y Component of SW Velocity: o. km/sec
Z Component of SW Velocity: o. km/sec
IMF Bx: o.nT
IMF By: o. nT
IMF Bz: o. nT
IMF |B|: 0.00 nT
IMF Clock Angle: 0.0 deg.

- View Magnetosphere

View Magnetosphere and hit "Update Plot" ${ }^{6}$

- View Ionosphere

About Us Space
Weather Models at
CCMC Request A
Model Run View Model
Run Results
Experimental/Reqlo1/2000 Time $=02: 30: 00 \mathrm{y}=0.00 \mathrm{R}_{\mathrm{E}}$
Time Simulations T

Figure: Simulation of the Solar Wind flow around the Earth.
EPS image
Model: BATSRUS
Run: CCMC_CCMC_053006_1
To track usage for our government sponsors, we ask that you notify CCMC staffCCMC staff whenever you use CCMC results in scientific publication or presentation. Thank you.

Update Plot Update Plot will update (generate) the plot with the chosen time and plot parameters below. This will take some time (typically $\mathbf{1 0 - 3 0 s}$) as data is read in and processed.

Plot Options:

Q Exclude region around the Earth up to 6
© Choose data time:
Date: 2000/01/01 Time: 02:3

- or -

O Change time by moving
-1 output steps

Image magnification 1
(all images; use >=1.25 for 3D Flowlines)
\square Allow variable plot image size
(all 2D plots: aspect ratio dx/dy between $\mathbf{0 . 3}$ and 4)Show simulation grid (disabled with 3D-Surface)
\square Interpolate data onto equidistant grid
(available with 3D-Surface and vector; recommended for plots
with vector)

Choose Plot Mode:
ColorContour (2D)
Choose quantity to be displayed (some Plot Modes require up to three choices):

Q $2: N$

Q 3: N

Plot Options for selected Plot Modes:
3D-Surface, 3 D-Flowlines:
View angles:

Color Contour:
\square Use Grayscale
\square Lock color range:
Min.: -1 Max.: 1Log scale (use all data>0 in non-negative fields)
Contour: \square show values with contour levels
Vector: length of arrows: 1.0

3D-Flowlines:
flowline start positions
Choose Flowline Setup Mode:
predefined in 3D ($V, B, 0$ other)
user-defined flowline start positions:

X:
$9,9.5,10,10,5,11,11,5$
$0,0,0,0,0,0$
$0,0,0,0,0,0$Plot to VRML

Choose Plot Area:

All Plot Modes except Line Plot and Vertical Plot: Select lower left corner of plot area on the left, and the upper right corner on the right.
Line Plot: Select start point of line on the left, the end point on the right.
Vertical Plot: Select X and Y position on the left.

Choose Cut Plane:

$\mathrm{X}=$ constant \bigcirc	-111
$\mathrm{Y}=$ constant ${ }^{\circ}$	0
$\mathrm{Z}=$ constant O	0

Reset Form Reset Form will reset changes to the defaults specified by the previous run of this script.
Update Plot Update Plot will update (generate) the plot with the chosen time and plot parameters above.

List Data (check to get any of the following outputs)

What:
© Plot variables from above
O Include all primary model output parameters (Warning: text files may become large).
You have to select vector magnitudes (e.g., "B","V","J") explicitly for plotting to get them: computed scalars such as
derived vectors (e.g, "JxB"): select one component or its magnitude to get all components
O Include parameters from this list in addition to those selected for the plot:
\square (copy names from Q1 list above and separate them with commas).
Where: O At positions specified: enter positions in X, Y, Z, (within the allowed range) as comma-separated lists.Use combination of positions in a 3D grid.
X positions: 0,0,0
Y positions: 5,7.5,10
Z positions: 0.2,0.3,0.4
© List Data From Plot:

- 2D plots (Contour, Vector, ...):
equidistant 61x61-element grid in cut plane (Interpolate data onto equidistant grid selected)
$\underset{T}{\text { Ermesminatiof }} 01 / 2000$ Time $=02: 30: 00 y=0.00 R_{E}$

Figure: Simulation of the Solar Wind flow around the Earth.

Update Plot
 Update Plot will update (generate) the plot with the chosen time and plot parameters below.

This will take some time (typically 10-30s) as data is read in and processed.

Plot Options:

Exclude region around the Earth up to $3 \quad \mathrm{R}_{\mathrm{B}}$

- Choose data time:
Date: 2000/01/01 Time: 02:3
- or -

Image magnification 2
(all images; use $>=1.25$ for 3D Flowlines)

- or -

\square Allow variable plot image size
(all 2D plots: aspect ratio dx/dy between 0.3 and 4)
\square Show simulation grid (disabled with 3D-Surface)
\square Interpolate data onto equidistant grid
(available with 3D-Surface and vector; recommended for plots
with vector)
Choose Plot Mode:
Choose quantity to be displayed (some Plot Modes require up to three choices):
Color+Vector+Flowlines \qquad Q 1: J_y Q 2: N \qquad Q 3: B_x

Plot Options for selected Plot Modes:

3D-Surface, 3D-Flowlines:
View angles:

$$
\text { AX [-90..90]: } 30 \text { AZ [-180 ... 180]: } 30
$$

Color Contour:
\square Use GrayscaleLock color range: Min.: -1 Max.: 1 \square
\square Log scale (use all data>o in non-negative fields)
Contour: \square show values with contour levels
Vector: length of arrows: 1.0

3D-Flowlines: flowline start positions Choose Flowline Setup Mode: only user-defined start points user-defined flowline start positions:
$\mathrm{x}:-4,-4,-2,-2,-1,-1,0,0,1,1,1.5,2,4,-10$
Y:

$$
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
$$

Z: 4,-4, 4,-4,4,-4,4,-4,4,-4,4,4,4,0
\square Plot to VRML

Choose Plot Area:

All Plot Modes except Line Plot and Vertical Plot: Select lower left corner of plot area on the left, and the upper right corner on the right.
Line Plot: Select start point of line on the left, the end point on the right.
Vertical Plot: Select X and Y position on the left.

X_{1}	-20	X_{2}	20	Range: -255 ... $33 \mathrm{R}_{\mathrm{E}}$	$\mathrm{X}=$ constant O	-111
Y_{1}	-20	Y_{2}	20	Range: -48 ... $48 \mathrm{R}_{\mathrm{E}}$	$\mathrm{Y}=$ constant ${ }^{\text {(}}$	0
Z_{1}	-20	Z_{2}	20	Range: -48 ... $48 \mathrm{R}_{\mathrm{E}}$	$\mathrm{Z}=$ constant \bigcirc	0
Reset Form	Reset Form will reset changes to the defaults specified by the previous run of this script. Update Plot will update (generate) the plot with the chosen time and plot parameters above					
Update Plot						

$$
\begin{equation*}
-20 .-10 . \tag{0}
\end{equation*}
$$

\square

Model at CCMC: BATSRUS
Figure: Simulation of the Solar Wind flow around the Earth. EPS image
Model: BATSRUS
Run: CCMC_CCMC_053006_1

Update Plot Update Plot will update (generate) the plot with the chosen time and plot parameters below. This will take some time (typically $10-30$) as data is read in and processed.

Plot Options:

0 Exclude region around the Earth up to $3 \mathrm{R}_{\mathrm{E}}$
(Choose data time:
Date: 2000/01/01 Time: 02:3 - or -

O Change time by moving
\square output steps

Image magnification 2
(all images; use $>=1.25$ for 3 D Flowlines)
\square Allow variable plot image size
(all 2D plots: aspect ratio dx/dy between 0.3 and 4)
\square Show simulation grid (disabled with 3D-Surface)
\square Interpolate data onto equidistant grid
(available with 3D-Surface and vector; recommended for plots with Vector)

Choose Plot Mode:
\square 1: Ј Q 2: N \square Q 3 : \square
Color+Vector+Flowlines

> 3D-Flowlines:
> flowline start positions
> Choose Flowline Setup Mode:
> only user-defined start points
> user-defined flowline start positions:

X: $8.7,9.4,9.8,10.2,10.6,8.7,9.4,9.8,10$
Y: $0,0,0,0,0,0,0,0,0,0,0$
Z: 6,5,4,3,2,-6,-5,-4,-3,-2
\square Plot to VRML

Choose Plot Area:

All Plot Modes except Line Plot and Vertical Plot: Select lower left corner of plot area on the left, and the upper right corner on the right.
Line Plot: Select start point of line on the left, the end point on the right.
Vertical Plot: Select X and Y position on the left.
$\mathrm{X}_{2} \quad 20$ Range: $-255 \cdots 3 \mathrm{R}_{\mathrm{E}}$
$\mathrm{I}_{2} \quad 20$ Range: $-48 \ldots 48 \mathrm{R}_{\mathrm{E}}$
$\mathrm{Z}_{2} \quad 20$ Range: $-48 \ldots 48 \mathrm{R}_{\mathrm{E}}$

Choose Cut Plane:

$Z_{2} \quad 20$ Range: - $48 \ldots 48 \mathrm{R}_{\mathrm{E}}$
Z=constant $\bigcirc 0$
Reset Form Reset Form will reset changes to the defaults specified by the previous run of this script.
Update Plot Update Plot will update (generate) the plot with the chosen time and plot parameters above.
$01 / 01 / 2000$ Time $=02: 30: 00 y=0.00 R_{E}$

> Z IMF, y=0, N, B-lines

> Obtain images for color-contour quantities N, T, P, and B1 (not B). Use 6 Re blocking radius and x2 magnification.

-Open OpenGGCM zero IMF and "View Magnetosphere"

Sort
by: Model Vx IMF Clock Angle
Total Number of Runs in the Database: 772
Number of Educational Runs in this Database: 34

| Model | Model Version | V_{x} | N | \|B| | IMF Clock Angle | $\mathbf{B}_{\mathbf{x}}$ | By | B_{z} | Condutance Model | $\left\lvert\, \begin{gathered} \text { Diploe } \\ \text { Tilt } \end{gathered}\right.$ | Run Number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OpenGGGCM | 2.1-1 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=5$) | | CCMC_CCMC_111605_2 |
| BATSRUS | v7.73 | -400.00000 | 5 -00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | | C_CCMC_o8o306_5 |
| BATSRUS | v7.73 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CxIC_CCMC_053106_1 |
| OpengGc: | 2.1-1 | -400000000 | 500000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | $\begin{aligned} & \text { uniform } \\ & (p=5: \lambda=5) \end{aligned}$ | 0.00 | CCMS_CCME_053006= |
| BATSRUS | v7.73 | -400.00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_053006_1 |
| OpenGGCM | 2.1-1 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | $\begin{gathered} \text { uniform } \\ (\mathrm{p}=5 ; \mathrm{h}=5) \end{gathered}$ | 35.00 | CCMC_CCMC_080306_6 |
| OpenGGCM | 2.1-1 | -400.00000 | 5-00000 | 20.00000 | 0.00000 | 0.00000 | 0.00000 | 20.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5$) | 0.00 | CCMC_CCMC_120505_1 |
| OpenGGGCM | 2.1-1 | -400.00000 | 30.00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5$) | 0.00 | CCMC_CCMC_112305_1 |
| BATSRUS | v7.73 | -400.00000 | 5.00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5$) | 0.00 | CCMC_CCMC_111705_ ${ }^{1}$ |
| BATSRUS with RCM | v7.73 | -400.00000 | 5-00000 | 5.00000 | 0.00000 | 0.00000 | 0.00000 | 5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5)$ | 0.00 | CCMC_CCMC_ ${ }^{111605}{ }^{1}$ |
| BATSRUS | v7.73 | -1000.00000 | 30.00000 | 5.00000 | 180.00000 | 0.00000 | 0.00000 | -5.00000 | uniform ($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_020906_2 |
| BATSRUS | v7.73 | -400.00000 | 5.00000 | 20.00000 | 180.00000 | 0.00000 | 0.00000 | -20.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_021606_1 |
| BATSRUS | v7.73 | -400.00000 | 15-00000 | 20.00000 | 180.00000 | 0.00000 | 0.00000 | -20.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_021606_2 |
| BATSRUS with RCM | v7.73 | -400.00000 | 5-00000 | 5.00000 | 180.00000 | 0.00000 | 0.00000 | -5.00000 | uniform $(\mathrm{p}=5 ; \mathrm{h}=5$) | 0.00 | CCMC_CCMC_111605_5 |
| BATSRUS | v7.73 | -400.00000 | 5-00000 | 40.00000 | 180.00000 | 0.00000 | 0.00000 | -40.00000 | uniform($\mathrm{p}=5 ; \mathrm{h}=0$) | 0.00 | CCMC_CCMC_060906_3 |
| OpenGGCM | 2.1-1 | -400.00000 | 5-00000 | 40.00000 | 180.00000 | 0.00000 | 0.00000 | -40.00000 | $\underset{(\mathrm{p}=5 ; \mathrm{h}=5)}{\text { uniform }_{2}}$ | 0.00 | CCMC_CCMC_060906_4 |

Plot Options:

\square Exclude region around the Earth up to $6 \mathrm{R}_{\mathrm{B}}$

\bigcirc Choose data time: Date: 2000/01/01 Time: 02: - or -

Image magnification 2
(all images; use $>=1.25$ for 3 D Flowlines)
\square Allow variable plot image size
O Change time by moving
-1 output steps
(all 2D plots: aspect ratio dx/dy between 0.3 and 4)
I Show simulation grid (disabled with 3D-Surface)
\square Interpolate data onto equidistant grid
(available with 3D-Surface and vector; recommended for plots with vector)
Choose Plot Mode:
Choose quantity to be displayed (some Plot Modes require up to three choices):
Line (1D)

Q $1: \mathrm{DH}_{2}: N \mathrm{~N}: \mathrm{V}$

Plot Options for selected Plot Modes:

3D-Surface, 3D-Flowlines:
View angles:

$$
\operatorname{AX}[-90 . .90]: 30 \quad A Z[-180 \ldots 180]: 30
$$

Color Contour:
\square Use Grayscale
\square Lock color range:
Min.: -1 Max.: \qquad

- Log scale (use all data>o in non-negative fields)

Contour: \square show values with contour levels
Vector: length of arrows: 1.0
${ }_{3}$ D-Flowlines:
flowline start positions Choose Flowline Setup Mode:
predefined in 3D (V, B, o other $)$
user-defined flowline start positions:
$\mathrm{X}: 9,9.5,10,10.5,11,11.5$
$\mathrm{Y}: 0,0,0,0,0,0$
$\mathrm{Z}: 0,0,0,0,0,0$
口 Plot to VRML

- Plot to VRML

Choose Plot Area:

All Plot Modes except Line Plot and Vertical Plot: Select lower left corner
of plot area on the left, and the upper right corner on the right.
Line Plot: Select start point of line on the left, the end point on the right.
Vertical Plot: Select X and Y position on the left.

$\mathrm{X}_{1} \quad 8$	X_{2}	16	Range: -350.01 ... 24.01 R_{E}	$\mathrm{X}=$ constant O	-163
$\mathrm{Y}_{1} 00$	Y_{2}	0	Range: $-48.01 \ldots 48.01 \mathrm{R}_{\mathrm{E}}$	$\mathrm{Y}=$ constant \odot	0
$Z_{1} \square 0$	Z_{2}	0	Range: $-48.01 . . .48 .01 \mathrm{R}_{\mathrm{E}}$	$\mathrm{Z}=$ constant O	0

Choose Cut Plane:

Reset Form Reset Form will reset changes to the defaults specified by the previous run of this script.
Update Plot Update Plot will update (generate) the plot with the chosen time and plot parameters above.

North IMF Case

- Go to BATSRUS N IMF (CCMC_CCMC_053106_1)
- Obtain $y=0$, Jy color contour, magnetic field line image (like slide 13). You will want the following start positions for the field lines.

3D-Flowlines:
flowline start positions
Choose Flowline Setup Mode:
only user-defined start points
user-defined flowline start positions:
$\mathrm{X}:-4,-4,-2,-2,-1,-1,0,0,1,1,1,5,2,4,11$.
Y: $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
Z: 4,-4,4,-4,4,-4,4,-4,4,-4,4,4,4,0

Exercise for north IMF case

- Find gradient along the x-axis of the z-component of the perturbation field (B1) at earth ($\mathrm{x}=0$). You will have to interpolate across the gap from $x=-3.5$ to $x=3.5$. From this calculate the force that the solar wind exerts on the Earth (gradient times dipole moment, 8×10^{22} A-m ${ }^{2}$).

South IMF Case

- Go to BATSRUS S IMF (CCMC_CCMC_011006_1)
- Obtain $y=0$, Jy color contour, magnetic field line image (like slide 13). You will want the following start positions for the field lines.

3D-Flowlines:
flowline start positions
Choose Flowline Setup Mode:
only user-defined start points
user-defined flowline start positions:
$X:-4,-4,-2,-2,-1,-1,0,0,1,1,2,2,4,2,52,5$
Y: $0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0$
Z: 4,-4,4,-4,4,-4,4,-4,4,-4,4,-4,4,4,-4,4

Exercises for south IMF case

1. Obtain tail current flow lines with J color contours. (Project onto $x=-20$ plane.)

2. Obtain Region 1 current flow lines with J color contours. (Project onto $x=0$ plane)

$01 / 01 / 2000$ Time $=02: 30 ; 00 \times 5.00 \mathrm{R}_{\mathrm{E}}$

Code	$\mathbf{V}_{\text {sw }}(\mathbf{k m} / \mathbf{s})$	$\mathbf{N}\left(\mathbf{c m}^{-\mathbf{3}}\right)$	$\left(\mathbf{B}_{\mathbf{x}}, \mathbf{B}_{\mathbf{\prime}}, \mathbf{B}_{\mathbf{z}}\right)$ $\mathbf{(n T)}$	$\mathbf{M a x} \mathbf{V y}$ $\mathbf{(k m} / \mathbf{s})$	$\mathbf{M a x} \mathbf{V y} / \mathbf{V}_{\mathbf{S w}}$
BATSRUS	400	5	$(0,0,0)$		
BATSRUS	400	5	$(0,0,5)$		
BATSRUS	400	5	$(0,5,0)$		
BATSRUS	400	5	$(0,0,-5)$		
BATSRUS	400	5	$(3.54,-$ $3.54,0)$		
BATSRUS	700	5	$(0,0,-5)$		
BATSRUS	1000	5	$(0,0,-5)$		
BATSRUS	400	30	$(0,0,-5)$		
OpenGGCM	400	5	$(0,0,-5)$		
OpenGGCM	400	5	$(0,0,5)$		
OpenGGCM	400	30	$(0,0,5)$		
Average					

