Problems:

- Consider only electron and ion collection currents. How does do equilibrium potential of dust grains depend on the mass of the plasma ions? (assume Te = Ti)
- How does the charging time depends on the radius of a particle?
- What do you expect happens to the charging equations in regions with high dust density?
- Can you write a trajectory integrator to follow the path of an ion the magnetic field of a centered, aligned dipole? What happens if you include the gravity of the planet? Co-rotational electric field? Increase the mass of the ion?
- What happens to the dispersion relations !(k) of your favorite plasma wave in regions with increasing dust density?

References:

- 1) Bliokh et al., Dusty and Self-Gravitational Plasmas in Space, Kluwer, 1995
- 2) Shukla and Mamun, Introduction to Dusty Plasma Physics, IOP 2002
- 3) Horanyi et al., Dusty Plasma E ← ects in Saturn's Magnetosphere: Expectation for Cassini, Rev. of Geophys., 2005
- 4) Mendis and Horanyi: Dusty Plasma E ← ects in Comets: Expectation for Rosetta, Rev. of Geophys., 2013