Problem Sheet: Planetary outer atmospheres Marina Galand July 2013

- 1. 1. The more energetic an auroral electron, the deeper in the atmosphere it is likely to be thermalized.
 - 2. The more energetic a solar photon, the deeper in the atmosphere it is likely to be absorbed.
 - 3. The use of recombination coefficients is enough to derive the electron density from the electron production rate in a region where transport is dominant.
 - 4. Let's consider two wavelengths, λ_1 and λ_2 , with $\lambda_1 > \lambda_2$ and a photo-absorption cross section $\sigma(\lambda)$ associated with the dominant neutral species present in the atmosphere. If $\sigma(\lambda_1) < \sigma(\lambda_2)$, then solar photons of wavelength λ_1 are going to deposit their energy deeper in the atmosphere than the more energetic solar photons of wavelength λ_2 .
 - 5. At Jupiter, the main aurora is primarily induced by the interaction of the planet with the space environment.
 - 6. Aurora is observed throughout the Solar System and can be used as a fingerprint of atmospheric species and a tracer of plasma processes and magnetic field line configuration.
 - 7. The solar flux at Neptune is 9 times less than at Saturn.
 - 8. Solar photons of 180 nm are effective ionizers.
 - 9. For a thermal electron population, it is possible to define a temperature.
 - 10. Photochemical equilibrium applied to ionospheric plasma means thermal electron production rate equals thermal electron loss rate.
 - 11. The profile in altitude of the electron density always peaks at the same altitude as the profile in altitude of the electron production rate.
 - 12. In the ionospheric region, the ion densities are several orders of magnitude lower than the neutral densities.
 - 13. Both ionospheric electrons and photoelectrons are thermal.
- 2. Short Problems.
 - (i) At which distance from the Sun should Uranus be located to experience a solar power input equal to the auroral power input, which it undergoes at its current location? Express the solution in AU.
 - (ii) The spectroscopic analysis of H₂ Lyman and Werner emissions can be used to derive the energy of incident auroral electrons over the 10-200 keV energy range. Why is softer electron precipitation not detected by this technique?

- **3.** Let's focus on the ionosphere of Saturn. Assume in this problem that H_2 and H_3^+ are the dominant neutral and ion species, respectively, and that all H_2^+ ions are converted to H_3^+ ions. The electron temperature is assumed to be 600 K.
 - (i) The nightside ionosphere at high latitudes is under auroral electron precipitation with the electron number density having reached 2×10^4 cm⁻³ at an altitude z of 1300 km above the 1 bar level. There is a sudden increase in the electron precipitation level yielding an additional 100 cm⁻³s⁻¹ in electron production rate.
 - (a) Calculate the electron number density at 1300 km after the increase in electron precipitation. By which factor has the electron number density increased? How would a significant increase in electron temperature, as a result of the precipitation intensification, affect the electron density?
 - (b) If the electron bombardment stops totally, how long will it take to have the electron density reduced by a factor of 2? of 10?
 - (ii) At low latitudes, under sunlit conditions the peak H_3^+ number density has reached a value of 5×10^3 cm⁻³.

What is the effect of an influx of water from the rings? Quantify your response. The water number density at this ionospheric region is about 10^5 cm⁻³.

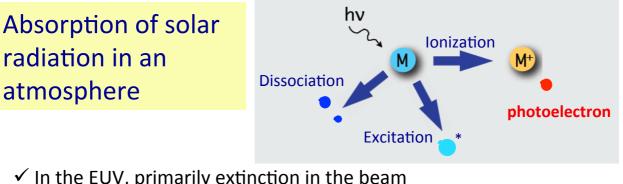
Ionization sources

• Ionisation potential:

- H₂: 15.43 eV ←→ 80 nm
- H: 13.60 eV ←→ 91 nm
- $CH_4: 12.55eV \leftrightarrow 99 nm$

13 eV ←→ ~100 nm

• Solar EUV radiation:


- Solar flux / (Sun-planet distance)²
- Energetic particles from the space environment
 - A few keV to a few 100s keV

Energy sources

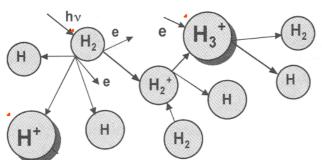
	Solar EUV input*	Auroral input*	Auroral particle input ^{**}
Earth (1 AU)	500 GW (1x10 ⁻³ W/m²)	80 GW	1-10 keV
Jupiter (5.2 AU)	800 GW (1.3x10 ⁻⁵ W/m²)	10 ⁵ GW	30-200 keV 2-30 mW m ⁻²
Saturn (9.5 AU)	200 GW (4.4x10 ⁶ W/m²)	(5-10)x10 ³ GW	10-20 keV ~ 1 mW m ⁻²
Uranus (19 AU)	8 GW	100 GW	-
Neptune (30 AU)	3 GW	1 GW	-

* Auroral input refers to "particle + Joule heating" (Strobel 2002)

** Values valid for the main auroral oval, inferred from the analysis of auroral emissions (e.g., Fox et al. 2008, Gustin et al. 2004, 2009)

✓ In the EUV, primarily extinction in the beam → apply Beer-Lambert Law: $dI_{\lambda}(s)$

$$\frac{dI_{\lambda}(s)}{I_{\lambda}} = -\sum_{i} \sigma_{i}^{abs}(\lambda) n_{i}(s)$$


✓ Attenuated solar flux at wavelength λ and at altitude z:

$$I_{\lambda}(z) = I_{\lambda}^{\infty} exp\left(-\sum_{i} \sigma_{i}^{abs}(\lambda) \int_{z}^{\infty} n_{i}(z') sec(\chi) \cdot dz'\right)$$

✓ Photoelectron production rate at λ :

$$P_{e,\lambda}(z) = \sum_{i} \sigma_{i}^{ion}(\lambda) n_{i}(z) I_{\lambda}(z) \propto I_{\lambda}^{TOA}$$

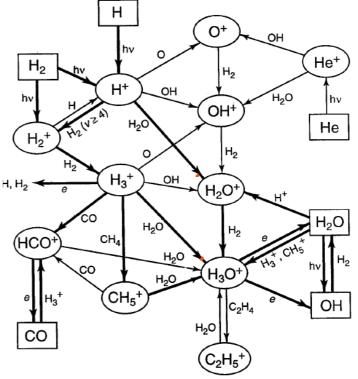
Photo-chemistry in an H₂ atmosphere

$$H_{2}^{+} + H_{2} → H_{3}^{+} + H$$

k₀ = 2.0 x 10⁻⁹ cm³ s⁻¹
H₃⁺ + e- → neutral products
α₀ = 1.73 x 10⁻⁶ x Te^{-0.5} cm³ s⁻¹
with Te in K.

Charge exchange reaction H⁺ + H₂(v≥4) → H₂⁺ + H (1) controls the abundance of H₃⁺ as it is quickly followed by:

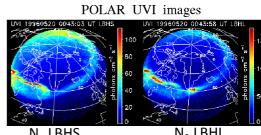
$$H_2^+ + H_2 \rightarrow H_3^+ + H$$


- Reaction rate k₁* = k₁ [H₂(v≥4)]/[H₂]
 - Low k₁* means less charge exchange reaction and increase in ionospheric densities

➤ k₁ = 10⁻⁹ cm³ s⁻¹ [Huestis, 2008]

Photochemistry in Gas Giant atmospheres

- $H^+ + H_2O \rightarrow H_2O^+ + H$ $k_2 = 8.2 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$
- $H_2O^+ + H_2 \rightarrow H_3O^+ + H_3$ $k_3 = 7.6 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$
- $H_3^+ + H_2O \rightarrow H_3O^+ + H_2$ $k_4 = 5.3 \times 10^{-9} \text{ cm}^3 \text{ s}^{-1}$


H₃**O**⁺ + e- → neutral products $\alpha_5 = 1.74 \times 10^{-5} \times \text{Te}^{-0.5} \text{ cm}^3 \text{ s}^{-1}$ with Te in K.

[Moses and Bass 2000]

AURORAL SPECTROSCOPIC ANALYSIS

- Identification of energetic particle type
- Assessment of (E_m, Q_{prec}) of energetic particles
- ✓ Supported by comprehensive modeling

N ₂ LBHS

N₂ LBHL

COLOR RATIO	Earth	Jupiter, Saturn
Two spectral bands chosen in:	N ₂ LBH	H ₂ Lyman and Werner
One band strongly absorbed by:	O ₂ (< 160 nm)	CH ₄ (< 140 nm)
Electron energy range covered	0.2 – 20 keV	~10 to 200 keV
Type of aurora identified:	Electron aurora (discrete only)	Electron aurora (diffuse + discrete)

Similar techniques can be applied at various planets
 BUT different limitations on the product