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Problem 1.

(a) Since  is constant and uniform, the continuity equation reduces to

 

iu =
ux
x

+
uy
y

= 0 .

which is satisfied when the expression for ux and uy are substituted into the equation.

(b)  Since B does not vary in time, Faraday's equation reduces to

E = 0 .
Thus,

dEz

dx
= 0       and      

dEz

dy
= 0

These conditions are both satisfied if Ez = constant = –E0.

(c)  From Ampère's Law, the current density is

j = –
1

µ0

Bx

y
ẑ ,

Substitution into Ohm's Law along with the expressions for u and B, yields
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e

,

which is a first-order, linear , ordinary differential equation (ODE) with the solution
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E0µ0l0

e
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dt =
0

y /l0 E0µ0l0
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daw(y / l0 ) ,

where l0  =  2 e / kµ0 and daw(y/l0) is the Dawson Integral function.  Other notations

used for this function are
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+
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The constant l0 is the diffusive scale length, that is, the location where the outward
diffusion of the magnetic field roughly equals the inward motion of the plasma.  The
constant B0 is approximately 1.85 times the maximum value of Bx.  This maximum value
occurs at y/l0 = 0.924 which is of order unity.  Thus B0 is about twice the maximum value
of the magnetic field, and this maximum occurs close to the location where the outward
diffusion of the field is balanced by the compression of the field due to the plasma
inflow.

(e)  The two components of the momentum equation are
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= –
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and
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ux
x

+ uy
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y
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x
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Substitution of the expressions for ux and uy, leads to

–k2x =
p

x
 ,    and    –k2y =

y
p +

Bx
2

2µ0

which are both satisfied when

p = p0
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2
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where Bx is given by the solution to part (c).  At large distance p tends to minus infinity
primarily because the kinetic energy increases as distance squared.  Thus, the solution is
only valid for finite distances from the stagnation point at x = 0, y = 0.

Problem 2.

(a)  Dropping the radiation term yields a partial differential equation (PDE) that can be
solved using the method of separation of variables:

mincp
T

t
=

s
T 5 /2 T

s

For an ideal gas at constant pressure n = n0 T0/T, so the PDE for T becomes

min0T0cp T

t
= T

s
T 5 /2 T

s

Setting T(s, t) = f(t) g(s) yields:

cpmin0T0 f –9 /2
df

dt
=
d

ds
g5 /2

dg

ds
= K

where K is the separation constant.  Solving the ODE for f gives

f = C1 –
7K

2cpmin0T0
t

–2 /7

where C1 is a constant of integration.  Solving the ODE for g gives

g =
7

4
Ks2 + C2 s + C3

2 /7

where C2 and C3 are also constants of integration.  The solution for T is therefore

T (s,t) = C1 –
7K

2cpmin0T0
t

–2 /7

7

4
Ks2 + C2 s + C3

2 /7

.

To evaluate the three integration constants, C1, C2, and C3 we use the three conditions:
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T (0,  t)  =   0;
T (s,  t)

s s=L

=  0; T (L,  0)  =  T0 .

The first condition gives C3 = 0, the second condition gives C2 = –7KL/2, and the third
condition gives C1 = – (7/4) KL2 T0

–2/7.  Substitution of the values into the above
expression yields the solution given in part (a) of the problem.  The value of K is not
needed, because it cancels out of the equations.  The cancellation occurs because of the
problem's relatively simple initial and boundary conditions.
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(b)  In the absence of thermal conduction

micp
T

t
= – n T = – n0T0 T –1 .
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Setting   =  –1, and integrating yields the solution:
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T = T0 1 3
t

R0

1/3

; R0 =
cpmiT0

2

n0
.

The key difference between conductive and radiative cooling is that  conductive cooling
becomes slower  as the temperature decreases while radiative cooling becomes faster.
Given enough time, radiative cooling will  eventually dominate, no matter how slow it is
initially.

(c)  The initial (i.e. linear) conductive and radiative cooling times for these values are:

C0  =  1.23 s and R0  =  1.55  105 s   with  R0/ C0  = 1.27  105.

Initially the radiative cooling is more than a hundred thousand times slower than the
conductive cooling.

(d)  At the loop top

T = T0 1 +
7

2

t

C0

–2 /7

so the local, nonlinear cooling time there is

C = C0 1 +
7

2

t

C0

= C0

T

T0

–7 /2

The local, nonlinear radiative time is

R = R0 1 – 3
t

RC0
= R0

T

T0

3

The two cooling times are equal when

Tsw
T0

=
R0

C0

–2 /13

where Tsw is the temperature where the switch over occurs.  For pure conductive cooling,
the switch over time, tsw, is

tsw

C0

=
2

7
R0

C0

7 /13

– 1
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The plasma has to cool by about a factor of 6 before radiative cooling becomes important,
i.e.

T0/Tsw  =  6.10 ,

corresponding to a temperature of Tsw = 4.92  106 K.  The time of the switch over is

tsw = 196 s .

Thus, when a heated loop disconnects from the reconnection site, it only takes about three
minutes before radiative cooling starts to dominate.

Problem 3.

The x and y components of Faraday' equation are:

Bx

t
 =  

Ez

y
     and     

By

t
 =  –  

Ez

x
  .

Using Leibniz's rule (also known as the fundamental theorem of calculus), we can write
the x component of Faraday's equation as

Ez(0, y0)  – Ez(0,0)  =   
t

Bx (0, y)  dy  –  Bx (0, y0) ˙ y 0  
0

y0

where y0 is the location of the x-line.  Because the field is line-tied at y = 0, Ez(x, 0) = 0.
Also by definition Bx (0, y0)  =  0 and Ez(0, y0)  = E0.  Consequently,

E0  =  
t

Bx (0,y)  dy
0

y0

Similarly, along the x-axis, we have

Ez (0,0)  – Ez (x0,0)  =  0  =   
t

By (x,0)  dx  –  By (x0,0)  ˙ x 0  
0

x0

Since the magnitudes of the magnetic flux between y = 0 and y0 and between x = 0 and x0

are equal, we obtain

˙ x 0  =  E0  / By (x0,0)

Substitution of the given function into the above expression leads to:

˙ x 0  =  
dx0

dt
 =  

E0

B0  a3  
(x0

2  +  a2)2

x0
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which upon integration yields:

–(1 +  x0
2 /a2)  =  t / A  +  constant

where A  = B0 a/(2E0).  Since it is assumed that x0 = 0 at t = 0, the value of the constant is
–1.  So the solution for x0 is

x0  =  a  t /( A  –  t)

and the solution for ˙ x 0  is

˙ x 0  =  (a /2 A )  ( A / t)1/ 2  (1 –  t / A )–3 / 2

The corresponding plot for x0 and ˙ x 0  is:
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The separatrix distance x0 becomes infinite at t  = tA because all of the flux passing
through the surface has reconnected by this time.  The separatrix speed, ˙ x 0 , is infinite at

both t  =  0 and t  =  1.0 when By(x0, 0) is zero.  A minimum separatrix speed of 8 /(3 3)
(a/ A)  occurs at t  =  A/4.


