
Problems for Magnetic Energy Conversion Processes T.G. Forbes

Problem 1.  (Vol. 1, Ch. 5).  The figure below shows a steady-state configuration where
anti-parallel field lines (solid lines) merge and annihilate at the y = 0 plane.  The annihilation
is driven by an imposed stagnation-point flow (dashed lines).

Resistive MHD Equations
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The stagnation-point flow u is prescribed by:

u��=��–ky� ŷ��+��kx�x̂�,

and the magnetic field has the form

B(x,�y)��=��B
x
(y)�x̂�,

where k is a constant and Bx(y) = – Bx(–y).

(a)  Use the resistive MHD equations listed above to show that the mass continuity equation

is satisfied if the density, �, is a constant.

(b)  Verify that Faraday’s equation is satisfied if the electric field is E = –Eo ẑ   where Eo is

a constant and ẑ  is the unit vector perpendicular to the x-y plane.

(c)  Use the resistive MHD Ohm’s Law above to determine Bx(y) in terms of the electrical

resistivity, �e, the magnetic permeability, µ0, and the constants, k and Eo.  “Explicitly”
means you should solve and integrate the different equation that comes from Ohm's Law.
(Hint:  You will need to use the Dawson Integral function.)

(d)  Plot the solution for Bx with Bx normalized to B0 and y normalized to l.  B0 and l are
constants defined by
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What is the physical significance of B0 and l0?
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(e)  Use the momentum equation to determine the gas pressure p(x, y).  What happens to
���the gas pressure as x or y tends to infinity?

Problem 2.  Energy losses due to radiation and thermal conduction play an important role in
the dynamics of solar flares.  Once a magnetic loop is detached from the reconnection site, it
starts to cool.  Some simple flare models assume that the cooling occurs at constant
pressure so that the density of the plasma, n, is inversely proportional to its temperature, T.
These models also assume that the plasma flows in the loop are so slow that the enthalpy
transport is negligible.  With these assumptions the heat equation that describes the cooling
of the plasma along a symmetric flare loop of constant length, L, can be written as:
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where mi is the ion mass, n in the density, cp is the specific heat at constant pressure, t is

time, � is a constant that measures the strength of the thermal conduction along the loop, s is

the distance along the loop, � is a constant that measures the strength of the radiative loss,

and � is a dimensionless constant that describes how the radiative loss varies with
temperature.  At the top of the loop, �T/�s = 0 because of the imposed symmetry.  For the

optically thin coronal plasma, � is less than zero in the temperature range between 105 K
and 107 K so that the radiation loss actually decreases as the temperature of the plasma

increases.  Assume that � = –1 and that the temperature at the base of the loops is
effectively zero.

(a) Show that if the radiation loss is negligible in the loop, its temperature declines as
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where T0 is the initial temperature at the top of the loop, s = L corresponds to the loop top, s

= 0 corresponds to the loop footpoint, and �C0 is the linear cooling time  prescribed by

�C0 �=�
7cpmin0L
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where n0 is the initial density at the top of the loop.  Note that �C0 is sometimes referred to
as the linear cooling time because it gives the initial rate at which the loops starts to cool

when t/�C0 << 1.  Plot T/T0 at the loop top as a function of t/�C0.

(b) Find the corresponding formula for T as a function of time assuming that the thermal
conduction loss is negligible.  Express your answer in terms of the linear radiative cooling

time, �R0, and give the formula for �R0.  Plot T/T0 as a function of t/�R0.

(c) Evaluate �C0 and �R0 at the top of the loop for L = 107 m, T0 = 3 � 107 K, n0 = 101 6 m– 3.

For the physical constants use � = 2 � 10–29 J s– 1 m3 K, � = 10–11 K–7/2 J s– 1 m– 1, mi =
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1.673 � 10–27 kg, and cp = 2.064 � 104 J K– 1 kg– 1.  How much slower is the initial radiative
cooling time compared to the initial conductive cooling time?

(d) A local, nonlinear cooling time can be defined as:

�(t)  =  �T /(�T /�t)

Use your answers to parts (a) and (b) above to derive formulas for the nonlinear conductive

cooling time �C and the nonlinear conductive radiative cooling time �R at the top of the loop

as a function of the temperature ratio T/T0 and the initial cooling time �C0 or �R0.  If radiative
cooling is negligible, how much does the temperature have to decrease by conductive

cooling before �R = �C ?  Use your results from part (c) to determine the actual temperature

(in degrees k) and time (in seconds) when �R = �C for the flare loop parameters given in part
(c).

Problem 3.  Consider the above two-dimensional configuration where the field lines at y = 0
are anchored in an ideally conducting plate that is stationary (i.e. Ez(x, 0)  =   0).  As
reconnection occurs, open field lines are converted to closed loops, and the separatrix
footpoints  located at ±xo. appear to move apart.  The electric field at the x-line where the

separatrices intersect is Eo ˆ z  in the direction perpendicular to the x-y plane.

Use Faraday’s equation for an ideal conducting fluid to show that the apparent velocity, xo,
of the footpoints is given by

˙ x 
0
 =  E

0
 / By (x

0
,0) .

Assume that Eo is constant in time and that

By(x, 0) = Bo (a
3 x) / (x2 + a2)2

where Bo and a are constants.  Determine the footpoint location xo and its velocity xo as
functions of time and sketch their behavior.  Assume xo = 0 at t = 0.
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