
PROBLEM SET

Heliophysics Summer School

July, 2013

Problem Set for Shocks and Particle Acceleration

There is probably only time to attempt one or two of these questions.

In the tutorial session discussion will concentrate on questions 2 and
3, but move onto other questions if there is time.
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SECTION Problems

1. The upstream deHoffmann-Teller velocity is given by

VHT = − n̂× (B×Vun)

n̂ ·B

Show that this is also the de Hoffmann-Teller velocity in the region downstream, i.e.,
that automatically the downstream flow is field-aligned when transforming into the
upstream de Hoffmann-Teller frame.

2. Derive the following expression for the ratio of downstream to upstream tangential
magnetic field component through a MHD discontinuity

Bdt

But

= r
vun

2 − cA,u2

vun2 − r cA,u2

where r = vdn
vun

= ρd
ρu

is the compression ratio and cA,u = Bun/(µ0ρu)
1/2 the upstream

Alfvén (intermediate) speed. Use for the derivation the tangential momentum jump
condition and the condition that the tangential electric field is constant through the
shock.

3. A proton (e.g. some energetic charged particle) is trapped between 2 moving magnetic
mirrors in which the field strength increases by a factor of 5. It has an initial kinetic
energy W = 1 keV and v⊥ = v‖ in the midplane between the two mirrors. Each mirror
is moving towards this mid-plane with velocity Vm = 10 km/s. Initially the mirrors
are separated by a distance L = 1010km.

(a) Using the invariance of particle magnetic moment µm = W⊥/B find the energy
to which the proton will be accelerated before it escapes the system.

(b) How long will it take to reach that energy?

Hints:

(a) Using conservation of magnetic moment, the minimum field required to mirror a
particle of initial pitch angle α0 and field B0 is Bm = B0/ sin2 α0.

(b) Treat the mirrors as flat pistons and show that v‖ increases by 2Vm at each bounce.

(c) Compute the number of bounces needed

(d) Accuracy to a factor of 2 is sufficient.
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4. For the exactly perpendicular shock, derive in the high Mach limit, where MA � 1
and Mcs � 1, the following relation for the compression ratio r,

r =
γ + 1

γ − 1
.

Show that it follows for γ = 5/3 that the maximum compression ratio is r = 4.

Method: Take the normal momentum conservation equation and write it out explicitly
in terms of upstream and downstream quantities. Rewrite in terms of r using ρd = rρu
and Bd = r Bu. Do a similar exercise for the energy jump condition. From these two
equations one can eliminate Pd, leaving an equation for r.

Note the definitions for the Alfvén and sonic Mach numbers:

MA =
Vu

Bu/
√
µ0ρu

(1)

Mcs =
Vu√

γ Pu/ρu
. (2)

5. Consider a one-dimensional, steady state, shock at which the x axis is taken parallel to
the unit shock normal vector n̂, such that all quantities depend only on x. The jump
across the shock for any quantity X is written as [X] = Xu−Xd, where the subscripts
u and d refer to the upstream and downstream values, respectively. For a time-steady,
one-dimensional shock, the condition ∂X/∂x = 0 implies [X] = 0.

The magnetic field and velocity vectors can be split into components normal and
parallel to the shock surface. For example,

B = Bxn̂ + Bt,

where Bt is the transverse component vector, and Bx is the normal component.

(a) Using Maxwell’s equations and the one-fluid MHD equations, show that

[Bx] = 0

[ρVx] = 0

(b) From the tranverse component of the MHD momentum equation (without grav-
ity), and using the results above, deduce the jump condition:[

ρVxVt −
Bx

µ0

Bt

]
= 0.

(c) A further jump condition is

[VxBt −BxVt] = 0.
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(You need NOT prove this.)

Using these jump conditions show that the upstream and downstream transverse
components of the magnetic field are parallel, i.e., that Bdt = αBut where α is a
non-zero scalar. Hence, show that

n̂ · (Bu ×Bd) = 0

i.e., that the three vectors n̂, Bu and Bd are coplanar.

(d) From the previous result, and the further result (which you do not need to prove)

n̂ · (Bu −Bd) = 0

explain why the vector

N = (Bu ×Bd)× (Bu −Bd)

can be used to determine the shock normal from the measured upstream and
magnetic field vectors.

6. Consider a fluid with negligible pressure which transports nonrelativistic energetic par-
ticles which are coupled to it by a constant diffusion coefficient κ. The fluid equations
and the Parker convection-diffusion equation for the particles are:

∂ρ

∂t
= ∇ · (ρV) = 0 (3)

ρ
∂V

∂t
+ ρ(V · ∇)V = −∇P (4)

∂P

∂t
+ V · ∇P − κ∇2P + γ(∇ ·V)P = 0 (5)

where P is the pressure of the energetic particles and γ = 5/3.

(a) Consider a stationary planar system with variations in the x direction only and
rewrite the equations for this system.

(b) Find three integrals of the system (mass flux, momentum flux, and energy flux
conservation). To do this rewrite PdV/dx appearing in one term as d/dx(PV )−
V dP/dx. In the terms involving dP/dx use the simplified version of the momen-
tum equation to replace dP/dx by the term involving V and dV/dx. The resulting
equation can be integrated easily.

(c) Determine the three constants by setting V = V0 > 0, ρ = ρ0, and P = 0 as
x→ −∞.

(d) Derive the following equation for V (x) alone by eliminating P in the energy flux
integral:

2κ

γ + 1

dV

dx
= (V − V0)

(
V − γ − 1

γ + 1
V0

)
.
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(e) Solve this equation for V (x) and interpret the constant of integration. Derive ex-
pressions for ρ(x) and P (x) and plot them schematically. What does the solution
represent?

7. Consider a perpendicular, time-steady shock, in a frame in which the shock is stationary
in the plane x = 0, with an upstream flow velocity V = −V x̂, and a uniform upstream
magnetic field B = Bẑ. The normal to the shock surface points upstream n̂ = x̂, so
that the upstream region has x > 0.

(a) Assuming ideal MHD, what is the upstream electric field E? Give your answer in
component form.

(b) A particle of mass m and charge q hits the shock with exactly the upstream flow
velocity, and is then reflected specularly, i.e., it reverses its component of velocity
normal to the shock.

From the particle’s equation of motion, obtain an analytic solution for the velocity
u and position x in component form, assuming an initial position of (0, 0, 0).
Assume that the magnetic and electric fields are uniform throughout the particle’s
motion. Use the definition Ω = qB/m.

(c) Describe briefly with a sketch the particle’s motion after reflection. Derive the
following expression for the maximum distance that a reflected particle reaches
upstream:

xmax =
V

Ω

(√
3− π

3

)
(d) Describe briefly the overall magnetic field structure of a high Mach number per-

pendicular shock as observed in space. What is the role of reflected ions at such
shocks, and how do they influence the structure?
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USEFUL INFORMATION
(i) The Lorentz force on a particle of charge q moving in electric and magnetic fields E

and B respectively is given by

F = q(E + v ×B)

(ii) Maxwell’s Equations

∇× E = −
∂B

∂t

∇×B = µ0j +
1

c2
∂E

∂t

∇ · E =
ρq
ε0

∇ ·B = 0

where µ0ε0 = 1/c2.

(iv) The MHD equations for a plasma with electrical conductivity σ:

∂ρ

∂t
+∇ · (ρV) = 0

ρ

(
∂

∂t
+ V · ∇

)
V = −∇p+

1

µ0

(∇×B)×B(
∂

∂t
+ V · ∇

)(
pρ−γ

)
= 0

∂B

∂t
= ∇× (V ×B) +

1

µ0σ
∇2B

E + V ×B = j/σ

(v) Conservation forms of the ideal MHD momentum and energy equations

∂(ρV)

∂t
+∇ ·

[
ρVV +

(
p+

B2

2µ0

)
II − BB

µ0

]
= 0

∂

∂t

(
1

2
ρV 2 +

p

γ − 1
+
B2

2µ0

)
+∇ ·

(
V

1

2
ρV 2 +

γ

γ − 1
pV +

E×B

µ0

)
= 0

(vi) The following vector identities and relations

∇× (a× b) = a (∇ · b) + (b · ∇) a− b (∇ · a)− (a · ∇)b

(∇×B)×B = (B · ∇)B−∇
(
B2

2

)
∇× (∇×B) = ∇ (∇ ·B)−∇2B

a× (b× c) = (a · c)b− (a · b) c

(a× b)× c = (a · c)b− (b · c) a
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