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Solution to Problem 1 
 
(a) Since ρ is constant and uniform, the continuity equation reduces to 
 

 
!iu!!=!!"ux

"x
!+!

"uy
"y
!!=!!0!.!  

 
which is satisfied when the expression for ux and uy are substituted into the equation. 
 
(b)  Since B does not vary in time, Faraday's equation reduces to 
 

! " E!!=!!0!.!  
Thus, 

dEz

dx
!!=!!0       and      

dEz

dy
!!=!!0  

 
These conditions are both satisfied if Ez = constant = –E0. 
 
(c)  From Ampère's Law, the current density is 
 

j!!=!!–! 1
µ0
!!Bx

!y
!ẑ!,!  

 
Substitution into Ohm's Law along with the expressions for u and B, yields 
 

!Bx

!y
!+! kµ0

"e

!yBx !!=!!
E0µ0
"e

!,!  

 
which is a first-order, linear , ordinary differential equation (ODE) with the solution 
 

Bx !!=!!
E0µ0l0
!e

!e–(y /l0 )
2

et
2

dt !!=!!
0

y /l0

"
E0µ0l0
!e

!daw(y / l0 )!,  

where l0  =  2!e / kµ0 and daw(y/l0) is the Dawson Integral function.  Other notations 
used for this function are 
 

daw(x)!!=!!D+ (x)!!=!!
1

2
! e– x

2

erfi(x)!!=!!– 1
2
i ! e– x

2

!erf(ix)!,  
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(d) 

 
 
The constant l0 is the diffusive scale length, that is, the location where the outward 
diffusion of the magnetic field roughly equals the inward motion of the plasma.  The 
constant B0 is approximately 1.85 times the maximum value of Bx.  This maximum value 
occurs at y/l0 = 0.924 which is of order unity.  Thus B0 is about twice the maximum value 
of the magnetic field, and this maximum occurs close to the location where the outward 
diffusion of the field is balanced by the compression of the field due to the plasma 
inflow. 
 
(e)  The two components of the momentum equation are 
 

ux
!uy
!x
!+!uy

!uy
!y
!!=!!–!!p

!y
!–!Bx

µ0
!!Bx

!y
 , 

and 

ux
!ux
!x
!+!uy

!ux
!y
!!=!!–!!p

!x
 . 

 
Substitution of the expressions for ux and uy, leads to 
 

–k2x!!=!!!p
!x

 ,    and    –k2y!!=!! !
!y

p!+! Bx
2

2µ0

"

#$
%

&'
 

 
which are both satisfied when 

p!!=!! p0 !!!
1

2
!k2 (x2 + y2 )!–! 1

2
! Bx

2

2µ0
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where Bx is given by the solution to part (c).  At large distance p tends to minus infinity 
primarily because the kinetic energy increases as distance squared.  Thus, the solution is 
only valid for finite distances from the stagnation point at x = 0, y = 0. 
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Reconnection — solutions

4. (a) We find the field along the x axis by substituting w = x into eq. (1). The result is purely
real so Bx = 0 — the field is purely vertical. The vertical component is

By(x, 0) =
µ0I0/2π

x− a
+
µ0I0/2π

x+ a
, (5)

which vanishes when x = 0. The field is oriented downward (By < 0) through the surface
from x = 0 to x = a − r (the inside of the right wire), so the net flux is given by the
integral

ψ0 = −
a−r
∫

0

By(x, 0) dx =
µ0I0
2π

ln(a/2r) . (6)

(b) We evaluate the field on the x-axis by substituting w = x into eq. (2)

By + iBx =
aµ0I0/π√
a2 − L2

√
x2 − L2

(x2 − a2)
(7)

Outside the current sheet x2 > L2 the radical in the numerator is purely real and the
field is therefore perfectly vertical: Bx = 0. On the other hand, within the current
sheet x2 < L2 the radical in the numerator is purely imaginary and the field is therefore
perfectly horizontal (By = 0).

To expand the
√· about the branch point write w = L+ ǫ eiφ, where ǫ≪ L and φ is the

polar angle. Expansion of (2) yields

By + iBx ≃ − aµ0I0/π

(a2 − L2)3/2

√
2Lǫ eiφ/2 . (8)

This shows that to the right of the current sheet (φ = 0) the field is directed downward
— consistent with its sense just to the left of the right wire. Noting that e±iπ/2 = ±i,
we see that Bx < 0 above the sheet (φ = +π) and Bx > 0 below the sheet (φ = −π)
— consistent with the counter-clockwise sense the field has at great distances. The
tangential component, Bx, is discontinuous across the sheet and there is no normal
component there, By = 0; this is a tangential discontinuity.

(c) Using |x| ≤ L≪ a in eq. (7), and the signs determined above, gives

Bx(x,±0) = ∓ µ0I0
πa2

√

L2 − x2 , (9)

adjacent to the sheet. The peak field strength occurs at x = 0 where

Bpk = max|Bx(x, 0)| =
µ0I0L

πa2
. (10)

Evaluating eq. (2) along the y axis (w = iy) gives

By + iBx = ∓ i
aµ0I0/π√
a2 − L2

√

y2 + L2

(y2 + a2)
≃ ∓ i

µ0I0
πa2

√

y2 + L2 , (11)
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where the final expression uses y, L ≪ a. The field is purely horizontal (By = 0) and
has the magnitude

|Bx| ≃ Bpk

(

1 +
y2

L2

)1/2

, (12)

after using expression (10). This agrees with eq. (5.21) of Vol. I, after making the
substitutions Bpk → Bi. Since the variable L matches in both expressions the full width
of the sheet is 2L, per our definition, rather than what is indicated on on figure 5.4.

(d) The total current is found by integrating expression (9) in a right-handed loop around
the current sheet — under the sheet (y = 0−) from x = −L to +L, then over the sheet
(y = +0) from x = +L to −L

Ics =
1

µ0

∮

B · dl =
2

µ0

L
∫

−L

Bx(x,−0) dx ≃ I0
L2

a2
. (13)

This current has the same sense at I0. For very large complex coordinates, |w| ≫ a, the
complex field is

By + iBx ∼ aµ0I0/π√
a2 − L2

1

w
=

µ0I0
π

1

w

(

1 − L2

a2

)−1/2

≃ µ0I0
2π

(

2 +
L2

a2

)

1

w
. (14)

Comparing to a single current, By + iBx = µ0I/2π we see an additional contribution
I0(L

2/a2) from the current sheet.

(e) For positions outside the current sheet, x > L, expression (7) is purely real, so the field
is purely vertical. The private flux is the integral of this field

ψ = −
a−r
∫

L

By(x, 0) dx =
aµ0I0/π√
a2 − L2

a−r
∫

L

√
x2 − L2

x2 − a2
dx . (15)

The addition of a line current Ics to eq. (1) gives

By + iBx =
µ0I0/2π

w − a
+
µ0I0/2π

w + a
+

µ0Ics
2πw

=
µ0I0
2π

(2 + L2/a2)w2 − L2

w(w2 − a2)
. (16)

The second expression shows that field crosses the x axis downward within L/
√

2 < x <
a. This is the private flux encircling the right wire, and it amounts to

ψ = −
a−r
∫

L/
√

2

By(x, 0) dx =
µ0I0
2π

ln(a/2r) − µ0Ics
2π

ln(
√

2a/L)

=
µ0I0
2π

ln(a/2r) − µ0Ics
4π

ln(2I0/Ics) = ψ(Ics) . (17)

where the final expression uses eq. (13) to replace a/L =
√

I0/Ics.
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(f) Performing the energy integral

∆W = −
ψ(Ics)
∫

ψ0

Ics dψ = − Icsψ(Ics) +

Ics
∫

0

ψ(Ics) dIcs

= −Ics[ψ(Ics) − ψ0] − µ0

4π

Ics
∫

0

Ics ln(2I0/Ics) dIcs (18)

=
µ0I

2
cs

8π
ln(2I0/Ics) − µ0I

2
cs

16π
. (19)

Expression (18) follows from using (17), and the final expression from performing the
definite integral.

(g) The constraint of conserved private flux is

ψ(Ics) − ψ0 =
µ0I0
2π

ln(a/a0) −
µ0Ics
4π

ln(2I0/Ics) = 0 . (20)

This places a relation between the wire location and the sheet’s current

Ics
2I0

ln(2I0/Ics) = ln(a/a0) . (21)

The left hand side is positive since Ics/I0 > 0, thus we see than the wires must be
separated (a > a0) to produce a horizontal current sheet.

Both the left wire and the current sheet exert a force on the right wire by their vertical
field contributions. We sum these contributions of eq. (16) at x = a to produce the
“external” field,

B(ext)
y =

µ0I0
4πa

+
µ0Ics
2πa

, (22)

which is upward (By > 0). The two currents thus exert a leftward force (per length)

Fx = − I0B
(ext)
y = − µ0I

2
0

4πa
− µ0I0Ics

2πa
, (23)

(attraction to the other parallel currents). Integrating this force over the displacement
of the wire, and doubling it to account for the left wire, gives the work

∆W = −2

a
∫

a0

Fx(a) da =
µ0I

2
0

2π
ln(a/a0) +

µ0I0
2π

a
∫

a0

Ics da

a

=
µ0I

2
0

2π
ln(a/a0) +

µ0I0
2π

Ics ln(a/a0) − µ0I0
2π

Ics
∫

0

ln(a/a0)dIcs (24)

=
µ0I

2
0

2π
ln(a/a0) +

µ0I
2
cs

4π
ln(2I0/Ics) − µ0

4π

Ics
∫

0

Ics ln(2I0/Ics) dIcs (25)

=
µ0I

2
0

2π
ln(a/a0) +

µ0I
2
cs

8π
ln(2I0/Ics) − µ0I

2
cs

16π
. (26)
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Expression (25) follows from insertig constraint (21) into eq. (24). The first term in
expression (26) is the work required to separate the wires without producing a current
sheet — it would be necessary even if the wires were in a vacuum. The remainder is
the additional work required due to the lack of reconnection to create new private flux.
It matches the electromagnetic energy in eq. (19) — the work required to change the
private flux.
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5. The tangential component of the field at the top and bottom of the sheet is

Bx(x,±δ) =
∂A

∂y
= ∓ µ0Ics

πL

√

1 − x2/L2 . (27)

The normal component is

By(x,±δ) = − ∂A

∂x
=

1

2

xδ

L2 − x2
|Bx| . (28)

It is evident that away from the tips, L− |x| ≫ δ, the field is predominantly tangential
(|Bx| ≫ |By|) and conforms to the Green-Syrovatskii form with peak strength

Bpk =
µ0Ics
πL

, (29)

achieves at the midpoint, x = 0.

The current density is

Jz(x, y) = − 1

µ0
∇2A ≃ − 1

µ0

∂2A

∂y2
=

Ics
πLδ

√

1 − x2/L2 =
|Bx(x, δ)|

δ
, (30)

after noting that the ∂2A/∂x2 will be small provided L− |x| ≫ δ. The total current is
found by integrating over the sheet

I =

L
∫

−L

dx

δ
∫

−δ

dy Jz(x, y) =
2Ics
π

L
∫

−L

√

1 − x2/L2
dx

L
= Ics (31)

The Lorentz force density is

F = J × B = ŷJz(x)Bx(x, y) − x̂Jz(x)By(x, y)

= −µ0I
2
cs

π2L2

[(

1 − x2

L2

)

y

δ2
ŷ +

y2x

2δ2L2
x̂

]

. (32)

The force is directed toward the origin. The largest forces are from the sides of the sheet
near the mid-point, x = 0, y = ±δ will begin to move the sides inward, making the sheet
narrower and therefore making the current density larger. Since this is a Lorentz force
it is directed so as to reduce the magnetic energy. Indeed, the minimum energy possible
(without reconnection) is for a genuine magnetic discontinuity, δ → 0.

(a)(b) The Alfvén speed at the position of peak field strength is

vA,pk =
Bpk√
µ0ρ

=
µ0Ics

πL
√
µ0ρ

, (33)

after using eq. (29). Using this in the Lunquist number gives

Lu =
µ0vA,pkL

ηe
=

µ
3/2
0 Ics
πηe

√
ρ

=
Ics

πηe
√
ρµ

−3/2
0

. (34)
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The denominator is a current

Isp =
πηe

√
ρ

µ
3/2
0

=
π

(4π × 10−7)3/2

√
mimek

1/2
B ln Λ

1.07 × 109 e2

√

ni
T 3
e

= 10−2 ln Λ

√

ni
T 3
e

, (35)

after using eqs. (5.12) and (5.13) from Vol. I for ηe. Using values from table 5.1 gives
very small currents.

magnetosphere corona

ni 105 1015 m−3

Te 107 106 K
ln Λ 11 33 —

Isp 10−9 10−2 Amps

This means a magnetospheric current sheet carrying Ics = 1 Amp has Lu ∼ 109 — a
very large Lunquist number, meaning resistivity is a very small effect. A similar current
sheet in the corona would have only a modest Lunquestion number (Lu ∼ 100), but
this is an exceptionally small current for such a big place. Typical coronal currents are
≫ 109 Amps.

(c) The electric field at the center is

Ez(0) = ηJz(0) =
ηIcs
πLδ

. (36)

The electromagnetic work is

EzIcs =
ηI2

cs

πLδ
. (37)

This can be seen to match the rate at which magnetic free energy is released form the
current sheet equilibrium by time differentiating eq. (19). The power from direct Ohmic
dissipation is

Pη =

∫

ηJ2 dx dy = 2ηδ

∆
∫

−∆

J2(x) dx =
4ηI2

cs

(πL2)2δ
(L2∆ − 1

3∆3)

=
4ηI2

cs

π2Lδ

(

∆

L
− ∆3

3L3

)

=
4

π

(

∆

L
− ∆3

3L3

)

Ez(0)Ics . (38)

When the resistivity is uniform over the current sheet, ∆ = L (Sweet-Parker recon-
nection) the magnetic energy released is converted mostly into heat directly by Ohmic
dissipation. When the resistivity is concentrated in a small central region, ∆ ≪ L, the
resistivity thermalizes only a small fraction, ∆/L ≪ 1, directly. This corresponds to
Petschek reconnection whereby slow magnetosonic shocks convert the remainder of the
energy to kinetic energy and heat.

(d) The Poynting flux normal to the sides of the current sheet is

Sy(x,±δ) = EzBx(x,±δ) = ∓ η
µ0I

2
cs

π2L2δ

√

1 − x2/L2 . (39)
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The contribution along the “ends” at x = ±∆ is generally smaller by ∼ δ/L and their
length also smaller by ∼ δ/∆, so we will neglect them. The net energy flux into the
sheet is therefore

P ≃
∆
∫

−∆

[Sy(x,−δ) − Sy(x,+δ)] dx = η
2µ0I

2
cs

π2Lδ

∆
∫

−∆

√

1 − x2/L2
dx

L

= η
2µ0I

2
cs

π2Lδ

[

sin−1(∆/L) + (∆/L)
√

1 − ∆2/L2

]

(40)

In the limit L → ∆ we recover a power matching eq. (37), showing that all the elec-
tromagnetic work done on the sheet is transmitted through the Poynting flux. The
restricted sheet limit, ∆ ≪ L, gives

P ≃ η
4µ0I

2
cs

π2Lδ

∆

L
, (41)

matching the same limit in eq. (38). This shows that all the energy entering the inner
resistive region sheet is Ohmically dissipated.
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