Problem set solutions: MHD dynamos

June 6, 2012

1 Tensor algebra

a) Compute the double contraction $\varepsilon_{i j k} \varepsilon_{i j l}$.

Solution: Using $\varepsilon_{i j k} \varepsilon_{i l m}=\delta_{j l} \delta_{k m}-\delta_{j m} \delta_{k l}$ leads too:
$\varepsilon_{i j k} \varepsilon_{i j l}=\delta_{j j} \delta_{k l}-\delta_{j l} \delta_{k j}=3 \delta_{k l}-\delta_{k l}=2 \delta_{k l}$.
b) Proof the vector identity

$$
\boldsymbol{\nabla} \times(\boldsymbol{A} \times \boldsymbol{B})=-(\boldsymbol{A} \cdot \boldsymbol{\nabla}) \boldsymbol{B}+\boldsymbol{A} \boldsymbol{\nabla} \cdot \boldsymbol{B}+(\boldsymbol{B} \cdot \boldsymbol{\nabla}) \boldsymbol{A}-\boldsymbol{B} \boldsymbol{\nabla} \cdot \boldsymbol{A}
$$

Solution: Compute $i^{\text {th }}$ component of expression:

$$
\begin{aligned}
{[\boldsymbol{\nabla} \times(\boldsymbol{A} \times \boldsymbol{B})]_{i} } & =\varepsilon_{i j k} \frac{\partial}{\partial x_{j}}\left(\varepsilon_{k l m} A_{l} B_{m}\right) \\
& =\varepsilon_{k i j} \varepsilon_{k l m}\left(\frac{\partial A_{l}}{\partial x_{j}} B_{m}+A_{l} \frac{\partial B_{m}}{\partial x_{j}}\right) \\
& =\left(\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}\right)\left(\frac{\partial A_{l}}{\partial x_{j}} B_{m}+A_{l} \frac{\partial B_{m}}{\partial x_{j}}\right) \\
& =B_{m} \frac{\partial A_{i}}{\partial x_{m}}+A_{i} \frac{\partial B_{m}}{\partial x_{m}}-B_{i} \frac{\partial A_{l}}{\partial x_{l}}-A_{l} \frac{\partial B_{i}}{\partial x_{l}} \\
& =(\boldsymbol{B} \cdot \boldsymbol{\nabla}) A_{i}+A_{i} \boldsymbol{\nabla} \cdot \boldsymbol{B}-B_{i} \boldsymbol{\nabla} \cdot \boldsymbol{A}-(\boldsymbol{A} \cdot \boldsymbol{\nabla}) B_{i}
\end{aligned}
$$

c) Any anti-symmetric tensor, $a_{i j}=-a_{j i}$, has three independent components (i.e. the elements above the diagonal). It can therefore be expressed in terms of a 3 -component vector using the Levi-Civita symbol, $a_{i j}=-\epsilon_{i j k} \gamma_{k}$. Derive an inverse expression given the vector γ_{k} explicityly in terms of $a_{i j}$.

Solution: Contract $a_{i j}=-\varepsilon_{i j k} \gamma_{k}$ with $-\frac{1}{2} \varepsilon_{l i j}$:

$$
-\frac{1}{2} \varepsilon_{l i j} a_{i j}=\frac{1}{2} \varepsilon_{l i j} \varepsilon_{i j k} \gamma_{k}=\frac{1}{2} \underbrace{\varepsilon_{i j l} \varepsilon_{i j k}}_{2 \delta_{l k}} \gamma_{k}=\gamma_{l}
$$

2 Second order correlation approximation

a) Start from the induction equation for \boldsymbol{B}^{\prime} (Volume I, Eq. 3.44):

$$
\begin{equation*}
\frac{\partial \boldsymbol{B}^{\prime}}{\partial t}=\boldsymbol{\nabla} \times\left(\boldsymbol{v}^{\prime} \times \overline{\boldsymbol{B}}+\overline{\boldsymbol{v}} \times \boldsymbol{B}^{\prime}-\eta \boldsymbol{\nabla} \times \boldsymbol{B}^{\prime}+\boldsymbol{v}^{\prime} \times \boldsymbol{B}^{\prime}-\overline{\boldsymbol{v}^{\prime} \times \boldsymbol{B}^{\prime}}\right) \tag{1}
\end{equation*}
$$

and assume $\overline{\boldsymbol{v}}=0,\left|\boldsymbol{B}^{\prime}\right| \ll|\overline{\boldsymbol{B}}|$ and neglect the contribution from magnetic resistivity. Formally integrate the equation to obtain a solution for \boldsymbol{B}^{\prime} and derive an expression for $\overline{\mathcal{E}}=\overline{\boldsymbol{v}^{\prime} \times \boldsymbol{B}^{\prime}}$. Assume that \boldsymbol{v}^{\prime} has a finite correlation time, τ_{c}, and simplify expressions by approximating time integrals with $\int_{-\infty}^{t} \overline{v_{i}^{\prime}(t) v_{k}^{\prime}(s)} \mathrm{d} s=\tau_{c} \overline{v_{i}^{\prime}(t) v_{k}^{\prime}(t)}$.

Solution:

The simplified induction equation reads:

$$
\frac{\partial \boldsymbol{B}^{\prime}}{\partial t}=\boldsymbol{\nabla} \times\left(\boldsymbol{v}^{\prime} \times \overline{\boldsymbol{B}}\right),
$$

The formal solution for \boldsymbol{B}^{\prime} is:

$$
\boldsymbol{B}^{\prime}(t)=\int_{-\infty}^{t} \boldsymbol{\nabla} \times\left(\boldsymbol{v}^{\prime}(s) \times \overline{\boldsymbol{B}(s)}\right) \mathrm{d} s
$$

The resulting emf reads:

$$
\begin{aligned}
\overline{\mathcal{E}} & =\int_{-\infty}^{t} \overline{v^{\prime}(t) \times \boldsymbol{\nabla} \times\left(\boldsymbol{v}^{\prime}(s) \times \overline{\boldsymbol{B}}(s)\right)} \mathrm{d} s \approx \overline{\tau_{c}} \overline{v^{\prime} \times \boldsymbol{\nabla} \times\left(\boldsymbol{v}^{\prime} \times \overline{\boldsymbol{B}}\right)} \\
& =\tau_{c} \overline{v^{\prime} \times\left[(\overline{\boldsymbol{B}} \cdot \boldsymbol{\nabla}) \boldsymbol{v}^{\prime}-\overline{\boldsymbol{B}} \boldsymbol{\nabla} \cdot \boldsymbol{v}^{\prime}-\left(\boldsymbol{v}^{\prime} \cdot \boldsymbol{\nabla}\right) \overline{\boldsymbol{B}}\right]}
\end{aligned}
$$

b) Express now all terms using the component notation summarized and show that the tensors $a_{i j}$ and $b_{i j k}$ in the expansion $\overline{\mathcal{E}}_{i}=a_{i j} \bar{B}_{j}+b_{i j k} \partial \bar{B}_{j} / \partial x_{k}$ are given by:

$$
\begin{align*}
a_{i j} & =\tau_{c} \overline{\left(\varepsilon_{i k l} v_{k}^{\prime} \frac{\partial v_{l}^{\prime}}{\partial x_{j}}-\varepsilon_{i k j} v_{k}^{\prime} \frac{\partial v_{m}^{\prime}}{\partial x_{m}}\right)} \tag{2}\\
b_{i j k} & =\tau_{c} \varepsilon_{i j m} \overline{v_{m}^{\prime} v_{k}^{\prime}} . \tag{3}
\end{align*}
$$

Solution:

$$
\begin{aligned}
& \overline{\mathcal{E}}_{i}=\tau_{c} \overline{\left\{\varepsilon_{i k l} v_{k}^{\prime}\left(\overline{B_{j}} \frac{\partial v_{l}^{\prime}}{\partial x_{j}}-\overline{B_{l}} \frac{\partial v_{m}^{\prime}}{\partial x_{m}}\right)-\varepsilon_{i m j} v_{m}^{\prime} v_{k}^{\prime} \frac{\partial \bar{B}_{j}}{\partial x_{k}}\right\}} \\
& =\underbrace{\tau_{c} \overline{\left(\varepsilon_{i k l} v_{k}^{\prime} \frac{\partial v_{l}^{\prime}}{\partial x_{j}}-\varepsilon_{i k j} v_{k}^{\prime} \frac{\partial v_{m}^{\prime}}{\partial x_{m}}\right)}}_{a_{i j}} \overline{B_{j}}+\underbrace{\tau_{c} \varepsilon_{i j m} \overline{v_{m}^{\prime} v_{k}^{\prime}}}_{b_{i j k}} \frac{\partial \bar{B}_{j}}{\partial x_{k}}
\end{aligned}
$$

c) Decompose these tensors into the terms $\boldsymbol{\alpha}, \boldsymbol{\gamma}$ and $\boldsymbol{\beta}$ defined through:

$$
\begin{aligned}
\alpha_{i j} & =\frac{1}{2}\left(a_{i j}+a_{j i}\right) \\
\gamma_{i} & =-\frac{1}{2} \varepsilon_{i j k} a_{j k} \\
\beta_{i j} & =\frac{1}{4}\left(\varepsilon_{i k l} b_{j k l}+\varepsilon_{j k l} b_{i k l}\right)
\end{aligned}
$$

Compute the trace $\alpha_{i i}$ and $\beta_{i i}$. To which physical quantities are they related?

Solution:

$$
a_{i j}=\tau_{c} \overline{\left(\varepsilon_{i k l} v_{k}^{\prime} \frac{\partial v_{l}^{\prime}}{\partial x_{j}}-\varepsilon_{i k j} v_{k}^{\prime} \frac{\partial v_{m}^{\prime}}{\partial x_{m}}\right)}
$$

Since the second term is antisymmetric in i and j, it does not contribute to $\alpha_{i j}$. Thus we have:

$$
\left.\begin{array}{rl}
\alpha_{i j} & =\frac{1}{2} \tau_{c} \overline{\left(\varepsilon_{i k l} v_{k}^{\prime} \frac{\partial v_{l}^{\prime}}{\partial x_{j}}+\varepsilon_{j k l} v_{k}^{\prime} \frac{\partial v_{l}^{\prime}}{\partial x_{i}}\right)} \\
\alpha_{i i} & =\tau_{c} \varepsilon_{i k l} v_{k}^{\prime} \frac{\partial v_{l}^{\prime}}{\partial x_{i}}
\end{array}=-\tau_{c} v_{k}^{\prime} \varepsilon_{k i l} \frac{\partial v_{l}^{\prime}}{\partial x_{i}}=-\tau_{c} \overline{\boldsymbol{v}^{\prime} \cdot \boldsymbol{\nabla} \times \boldsymbol{v}^{\prime}}\right) ~(\underbrace{}_{\underbrace{}_{n}=-\frac{1}{2} \varepsilon_{n i j} a_{i j}}=-\frac{1}{2} \tau_{c} \overline{\left(\varepsilon_{n i j} \varepsilon_{i k l} v_{k}^{\prime} \frac{\partial v_{l}^{\prime}}{\partial x_{j}}-\varepsilon_{n i j} \varepsilon_{i k j} v_{k}^{\prime} \frac{\partial v_{m}^{\prime}}{\partial x_{m}}\right)})
$$

With $b_{i j k}=\tau_{c} \varepsilon_{i j m} \overline{v_{m}^{\prime} v_{k}^{\prime}}$ we get:

$$
\begin{aligned}
\beta_{i j} & =\frac{1}{4}\left(\varepsilon_{i k l} b_{j k l}+\varepsilon_{j k l} b_{i k l}\right)=\frac{1}{4} \tau_{c}\left(\varepsilon_{i k l} \varepsilon_{j k m}+\varepsilon_{j k l} \varepsilon_{i k m}\right) \overline{v_{m}^{\prime} v_{l}^{\prime}} \\
& =\frac{1}{2} \tau_{c} \varepsilon_{i k l} \varepsilon_{j k m} \overline{v_{m}^{\prime} v_{l}^{\prime}}=\frac{1}{2} \tau_{c}\left(\delta_{i j} \delta_{l m}-\delta_{i m} \delta_{j l}\right) \overline{v_{m}^{\prime} v_{l}^{\prime}} \\
& =\frac{1}{2} \tau_{c}\left(\delta_{i j} \overline{v^{\prime 2}}-\overline{v_{i}^{\prime} v_{j}^{\prime}}\right) \\
\beta_{i i} & =\tau_{c} \overline{{v^{\prime}}^{2}}
\end{aligned}
$$

$\alpha_{i i}$ is proportional to the negative kinetic helicity of the flow, $\beta_{i i}$ is proportional to the turbulent rms velocity squared. γ can be expressed as the divergence of the velocity correlation tensor.
d) Make now the additional assumption of isotropy, which implies that $\alpha_{i j}, \beta_{i j}$, as well as the correlation tensor $\overline{v_{i}^{\prime} v_{j}^{\prime}}$ are diagonal, i.e. $\alpha_{i j}=\alpha \delta_{i j}$. Compute the scalar α-effect and the turbulent diffusivity η_{t}.

How is γ related to η_{t} ? Discuss under which conditions these effects exist.

Solution:

Isotropy implies:

$$
\begin{aligned}
\alpha & =\frac{1}{3} \alpha_{i i}=-\frac{1}{3} \tau_{c} \overline{\boldsymbol{v}^{\prime} \cdot \boldsymbol{\nabla} \times \boldsymbol{v}^{\prime}} \\
\eta_{t} & =\frac{1}{3} \beta_{i i}=\frac{1}{3} \tau_{c} \overline{v^{\prime 2}} \\
\gamma_{i} & =-\frac{1}{2} \tau_{c} \frac{\partial}{\partial x_{m}} \overline{v_{v}^{\prime} v_{m}^{\prime}}=-\frac{1}{2} \tau_{c} \frac{\partial}{\partial x_{m}}\left(\frac{1}{3} \overline{v^{\prime 2}} \delta_{i m}\right) \\
& =-\frac{1}{6} \tau_{c} \frac{\partial}{\partial x_{i}} v^{\prime 2}=-\frac{1}{2} \frac{\partial}{\partial x_{i}} \eta_{t}
\end{aligned}
$$

Note that the last step is only valid if τ_{c} does not vary spatially. Although this effect is very often expressed as gradient of η_{t}, this is not the case for highly stratified convection such as the solar convection zone. Since $v^{\prime 2}$ is increasing monotonically from the base of the CZ toward the photosphere, the resulting γ describes a downward transport throughout the entire CZ "turbulent pumping".
η_{t} is present under minimal assumptions (e.g. isotropy, homogeneity) since it is simply related to the turbulence intensity. γ requires in addition inhomogeneity (e.g. stratification). For α reflectional symmetry needs to be broken, e.g. through a combination of stratification and rotation.

3 Biermann battery

From the equation of motion for the drift velocity \boldsymbol{v}_{d} of electrons

$$
n_{e} m_{e}\left(\frac{\partial v_{d}}{\partial t}+\frac{v_{d}}{\tau_{e i}}\right)=n_{e} q_{e}\left(\boldsymbol{E}+\boldsymbol{v}_{d} \times \boldsymbol{B}\right)-\boldsymbol{\nabla} p_{e}
$$

with:
$\tau_{e i}$: collision time between electrons and ions
n_{e} : electron density
q_{e} : electron charge
m_{e} : electron mass
p_{e} : electron pressure
\boldsymbol{E} : electric field in local frame of rest of fluid,
we can derive an expression for the electric current $\boldsymbol{j}=n_{e} q_{e} \boldsymbol{v}_{d}$ (generalized Ohm's law):

$$
\frac{\partial \boldsymbol{j}}{\partial t}+\frac{\boldsymbol{j}}{\tau_{e i}}=\frac{n_{e} q_{e}^{2}}{m_{e}} \boldsymbol{E}+\frac{q_{e}}{m_{e}} \boldsymbol{j} \times \boldsymbol{B}-\frac{q_{e}}{m_{e}} \nabla p_{e}
$$

For simplicity we neglect in the following the time derivative of \boldsymbol{j} (no plasma oscillations) and the Hall term (second term on the right hand side). In addition we express the equation in the laboratory frame, by substituting \boldsymbol{E} by $\boldsymbol{E}+\boldsymbol{v} \times \boldsymbol{B}$. Solving for \boldsymbol{E} gives:

$$
\boldsymbol{E}=-\boldsymbol{v} \times \boldsymbol{B}+\frac{1}{\sigma} \boldsymbol{j}-\frac{1}{\varrho_{e}} \boldsymbol{\nabla} p_{e} .
$$

Here, $\sigma=\tau_{e i} n_{e} q_{e}^{2} / m_{e}$ denotes the electric conductivity, and $\varrho_{e}=n_{e} q_{e}$ the electron charge density. Using Maxwell's second law yields the induction equation

$$
\frac{\partial \boldsymbol{B}}{\partial t}=-\boldsymbol{\nabla} \times \boldsymbol{E}=\boldsymbol{\nabla} \times(\boldsymbol{v} \times \boldsymbol{B}-\eta \boldsymbol{\nabla} \times \boldsymbol{B})+\frac{1}{\varrho_{e}^{2}} \boldsymbol{\nabla} \varrho_{e} \times \boldsymbol{\nabla} p_{e} .
$$

The magnetic field independent source term $\nabla \varrho_{e} \times \nabla p_{e} / \varrho_{e}^{2}$ is formally identical to the baroclinic term in the vorticity equation. Starting from the momentum equation

$$
\frac{\partial \boldsymbol{v}}{\partial t}+\nabla \frac{v^{2}}{2}-\boldsymbol{v} \times \boldsymbol{\nabla} \times \boldsymbol{v}=-\frac{1}{\varrho} \boldsymbol{\nabla} p
$$

the equation for $\omega=\boldsymbol{\nabla} \times \boldsymbol{v}$ is given by

$$
\frac{\partial \omega}{\partial t}=\boldsymbol{\nabla} \times(\boldsymbol{v} \times \omega)+\frac{1}{\varrho^{2}} \boldsymbol{\nabla} \varrho \times \nabla p .
$$

The term $\frac{1}{\varrho^{2}} \nabla \varrho \times \nabla p$ is often referred to as "baroclinic vector". This term vanishes for a barotrope fluid in which $p=p(\varrho)$. In the Earths's atmosphere baroclinic conditions are found mostly in mid-latitudes, where front systems often lead to rapid temperature changes that are not aligned with constant pressure surfaces.

Going back to the induction equation, a contribution from $\frac{1}{\varrho_{e}^{2}} \nabla \varrho_{e} \times \nabla p_{e}$ can arise in the universe when bright point sources (quasars in the early universe, hot young stars in star formation regions) drive ionization fronts through an inhomogeneous plasma (the background density fluctuations are independent from the orientation of the ionization fronts). It has been estimated by Subramanian et al. 1994 (MNRAS $271,15)$ that this process can produce magnetic field in the intergalactic medium of the order of $3 \cdot 10^{-23}$ G, which would lead to a galactic seed field of the order of $3 \cdot 10^{-20} \mathrm{G}$ after a density fluctuation collapsed and formed a galaxy (amplification by a factor of about 10^{3}). Such a weak seed field would be sufficient to explain the observed magnetic field of galaxies $\sim 10^{-6} \mathrm{G}$, assuming that a dynamo exponentiated the field over 30 times. The latter would require a growth rate of $\sim 3 \mathrm{Gyr}^{-1}$, which is within the realm of estimates for galactic dynamos (see for example the extensive review by Brandenburg \& Subramanian 2005, Physics Reports, Volume 417, Issue 1-4, p. 1-209, astro-ph/0405052).

