Problem Set SOLUTIONS: Heliophysics Textbook I: Chapter 3

Problem set solutions: MHD dynamos

1 Tensor algebra

2

June 6, 2012

a) Compute the double contraction €;;,€i;:.

Solution: Using €;x€itm = 610km — 6jmdr leads too:
€ijk€ijl = 050kl — 0510k = 30kt — Ot = 20k1.

Proof the vector identity

Vx(AxB)=—(A-V)B+AV -B+(B-V)A—-BV - A

Solution: Compute i*" component of expression:

0
[V x (A x B)]; Sijk g~ (€kim A1 Brm)
Ly
04 0B,
S <3wj TN, )
0A; 0By,
0i10im — 0imd1) | =—Bm + Aj———
(Gud; Jl)(f?%‘ " lﬁfﬂj)
04; 0B, 04 0B;
Bm Ai—— - Bi— — A
Oxm, + Oxm, Ox; Yo,
(B-V)A;+AV-B-BV-A—(A-V)B;
Any anti-symmetric tensor, a;; = —a;;, has three independent components (i.e. the elements above
the diagonal). It can therefore be expressed in terms of a 3-component vector using the Levi-Civita
symbol, a;; = —€;;1y%. Derive an inverse expression given the vector v; explicityly in terms of a;;.
Solution: Contract a;; = —&;;x 7 with —%slij:

_1 1 1

5€Lij Q5 = 3€1ijEijk Yk = 3 €ijl€ijk Tk = M
N—_———

201

Second order correlation approximation

a) Start from the induction equation for B’ (Volume I, Eq. 3.44):

0B’
ot

=Vx(vVxB+9xB —nVxB +v' xB —v xB'), (1)
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and assume T = 0, |B’| < |B| and neglect the contribution from magnetic resistivity. Formally in-
tegrate the equation to obtain a solution for B’ and derive an expression for € = v’ x B’. Assume
that v’ has a finite correlation time, 7., and simplify expressions by approximating time integrals with

J2 o W0 (5)ds = el B (D).
Solution:
The simplified induction equation reads:

OB’ —
5t =V x (v xB),

The formal solution for B’ is:

B'(t) = /_tOOV X (v'(s) X B(s)) ds .

The resulting emf reads:

E = /t V'(t) x V x (v'(s) x B(s))ds = 7.0’ x V x (v x B)

— 00

= 10 X [(B-V)v'=BV-v — (v -V)B]|

Express now all terms using the component notation summarized and show that the tensors a;; and
biji in the expansion & = a;; B + bi;x0B;/0x), are given by:
ov] ov!
ai; = Te| vl —L — gipiv) —1 9
ij c( 1kl k(’“)xj ikj kaxm ( )
bijk = TeCijmUp v}, - (3)

Solution:

= S A—C 0B;
Ei = Themv. | Bi—t — B — ) — g vl —2L
! i J O0x; 0xm MR O
! / ¥5)

v — —0B;

_ / l / m 7 7 J

= T\ €V, 7= — CikjV 7 | Bj + Te€ijmU, v, m—

C( G kaxj 1R] kaxm) J ceryymUmUEk axk

bijk

Qjj
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¢) Decompose these tensors into the terms a, v and 8 defined through:

aij = 5 (e +ajz)
1
Vi = _gaijkajk
1
Bij = 1 (€ikbjnl + €5k1bint) -

Compute the trace a;; and ;. To which physical quantities are they related?

Solution:

v, ov!
/ l / m
G5 = T¢ (Eiklvk_ — aikjvk—
O0x; 0T

Since the second term is antisymmetric in ¢ and j, it does not contribute to a;;. Thus we have:

1 ov] 4 (’“)Ul’
Q5 = E; kl'U E; kl'U
19 2 2 k a J k a
/ !
Qi = TERU St = —TeVhEril g = —T0 - V X ¥/
1 1 v oo,
Tn = _§€nijaij 5 Enzjgzklvka Enugzk_]vka
1 ov, ov!
I
= —oTc|  EinEikl  Vpa t EnijChij Vo
2 N—— 8Ij N—— 8Im
5jk6nl75jl6nk 26kn
1 , Ol 8 ; i oy 81)}
= ——7.|v — vl —= =
2\ "k 9z, ”(?:Z:J "817]
1 0 ——
= —=7 vl v
2 "0z, "
With bijr = Tegijmvl,v), We get:
1 1 o
Bij = 1 (€iktbjrr + €jribint) = 1T (€iki€jkm + EjRiEikm) Vip )

1 -
!
- Tcalklajkmv 'Ul 2Tc (5ij5lm - 5im5jl) ’U;nl)l

2
1 _
= 2 ((Ljv —vgv‘;)
B = T

«; is proportional to the negative kinetic helicity of the flow, 3;; is proportional to the turbulent rms
velocity squared. v can be expressed as the divergence of the velocity correlation tensor.

d) Make NOW | the additional assumption of isotropy, which implies that a;;, 3;;, as well as the correlation

tensor v/v’, ’UJ are diagonal, i.e. a;; = ad;;. Compute the scalar a-effect and the turbulent diffusivity 7.
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How is = related to 7:? Discuss under which conditions these effects exist.

Solution:
Isotropy implies:

1 1
a = ga“:——rcv’ V x v
1 1
no= gﬁii:§7’cv’2
1 0 = _ 1 0 (15
7 - — sl ] - — = ca_ o 6lm
7 2 0z L 2 O, <3“
1 9 . 10
= ——r,—v =—-=
6 6:51 261‘int

Note that the last step is only valid if 7. does not vary spatially. Although this effect is very often
expressed as gradient of 7, this is not the case for highly stratified convection such as the solar
convection zone. Since v’ is increasing monotonically from the base of the CZ toward the photosphere,
the resulting v describes a downward transport throughout the entire CZ “turbulent pumping”.

7 is present under minimal assumptions (e.g. isotropy, homogeneity) since it is simply related to
the turbulence intensity. 7 requires in addition inhomogeneity (e.g. stratification). For « reflectional
symmetry needs to be broken, e.g. through a combination of stratification and rotation.

3 Biermann battery

From the equation of motion for the drift velocity v, of electrons

NeMe (% + E) = neQe(E + vgq X B) - Vpe
8t Tei
with:
Te;: collision time between electrons and ions
ne: electron density
ge: electron charge
me: electron mass
Pe: electron pressure
E: electric field in local frame of rest of fluid,
we can derive an expression for the electric current j = ne ¢. vgq (generalized Ohm’s law):
. . 9

05 3 _nelep G p g,

ot Te Me Me Me
For simplicity we neglect in the following the time derivative of j (no plasma oscillations) and the Hall
term (second term on the right hand side). In addition we express the equation in the laboratory frame, by
substituting £ by E + v x B. Solving for E gives:

1. 1
E=—-vxB+—-j5——Vp..
a Qe
Here, 0 = Temqu /m. denotes the electric conductivity, and g. = ne ¢ the electron charge density. Using

Maxwell’s second law yields the induction equation

OB 1
W:—V><E=V><(va—anB)—i—?VQepre.

€
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The magnetic field independent source term Vo, x Vp./? is formally identical to the baroclinic term in
the vorticity equation. Starting from the momentum equation

ov v2 1
E‘FV?—’UXVX’U——EVP

the equation for w = V X v is given by

%—L::Vx(vxw)+§Vngp.

The term = Vo x Vp is often referred to as “baroclinic vector”. This term vanishes for a barotrope fluid in
which p = p(p). In the Earths’s atmosphere baroclinic conditions are found mostly in mid-latitudes, where
front systems often lead to rapid temperature changes that are not aligned with constant pressure surfaces.

Going back to the induction equation, a contribution from Q—EVQE x Vp. can arise in the universe
when bright point sources (quasars in the early universe, hot younﬁg stars in star formation regions) drive
ionization fronts through an inhomogeneous plasma (the background density fluctuations are independent
from the orientation of the ionization fronts). It has been estimated by Subramanian et al. 1994 (MNRAS
271, 15) that this process can produce magnetic field in the intergalactic medium of the order of 3- 10723
G, which would lead to a galactic seed field of the order of 3-10720 G after a density fluctuation collapsed
and formed a galaxy (amplification by a factor of about 103). Such a weak seed field would be sufficient to
explain the observed magnetic field of galaxies ~ 1075 G, assuming that a dynamo exponentiated the field
over 30 times. The latter would require a growth rate of ~ 3 Gyr—!, which is within the realm of estimates
for galactic dynamos (see for example the extensive review by Brandenburg & Subramanian 2005, Physics
Reports, Volume 417, Issue 1-4, p. 1-209, astro-ph/0405052).
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