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Equation numbers in the Homework set are identified with an H, e.g. equa-
tion (H3).

PROBLEM 1: THERMAL WIND BALANCE

(a) The key here is to first divide equation (H1) by ρ and then compute the curl of the
Coriolis term with the help of (H22) and (H23). You should also notice that

Ω0 = Ω0ẑ = Ω0

(

cos θr̂ − sin θθ̂
)

. (1)

It looks ugly at first glance, but if you work it out, you’ll find that there is only one surviving
nonzero term:

[∇× (2Ω0×v)] ·φ̂ = 2Ω0·∇vφ . (2)

Since Ω0 and λ are independent of z and φ, and since the sphere is periodic in φ, an average
over longitude <> gives

〈2Ω0·∇vφ〉 = 2Ω0·∇ 〈vφ〉 = 2λΩ0·∇Ω . (3)

Using (H20), (H18), and the chain rule for differentiation, it’s straightforward to show
that

∇×

(

∇P

ρ

)

= −∇P×∇ρ

ρ2
. (4)

Averaging equation (4) over longitude and using the result in equation (3) then leads you to
the thermal wind equation, equation (H3).

(b) The Ω countours would be cylindrical, so your sketch should have straight lines parallel
to the rotation axis, with the value of Ω increasing as you get farther from the rotation axis.

(c) The Coriolis force associated with the differential rotation is

−2ρΩ0×

(

〈vφ〉 φ̂
)

= 2ρΩ0 〈vφ〉 λ̂ . (5)

If Ω = Ω(λ) then 〈vφ〉 is also a function of λ alone, so

2ρΩ0 〈vφ〉 λ̂ = ρ∇ΨDR (6)
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where

ΨDR = 2Ω0

∫

〈vφ(λ)〉 dλ . (7)

If we define Ψ′ = Ψ+ΨDR, and if we neglect the terms on the left hand side (assuming
a steady state and low Rossby number), then equation (H1) yields

∇ 〈P 〉 = ρ∇Ψ′ . (8)

Thus, constant 〈P 〉 and Ψ′ surfaces coincide because ∇ 〈P 〉 and ∇Ψ′ are parallel.

(d) Taking the gradient of equation (H4) gives

∇S

CP

=
∇P

γP
− ∇ρ

ρ
(9)

So,
∇ρ

ρ
=

∇P

γP
− ∇S

CP

. (10)

and
∇P×∇ρ

ρ2
= −∇P×∇S

ρCp

. (11)

The φ̂ component of the right-hand side is

1

rρCP

(

∂P

∂r

∂S

∂θ
− ∂P

∂θ

∂S

∂r

)

(12)

Since the radial component of ∇P is generally much larger than the latitudinal component,
and since both components of ∇S are comparable, then the first term in equation (12) will
be much bigger than the second term. Using equation (H5) and plugging this into (H3)
yields (H6).

Along with the usual approximations that justify the fluid equations (small mean-free
path, thermodynamic equilibrium), our derivation of (H6) relied on these assumptions

1. We neglected the Lorentz force and viscous diffusion in equation (H1)

2. We assumed low Rossby number (the Coriolis force dominates the advection term)

3. We assumed a statistically steady state

4. We assumed an ideal gas equation of state with constant CP , γ

5. We assumed that the stratification is nearly adiabatic and hydrostatic

The most essential approximations are 1 and 2, which gives us the force balance in equation
(H3). Magnetic tension, meridional Reynolds stresses, advection of zonal vorticity by the
meridional circulation, and viscous diffusion (in rough order of importance) can all disrupt
thermal wind balance (there is also a potentially important component of the centrifugal
force proportional to 〈vφ〉2 that we have neglected as part of the low Rossby number approx-
imation). A steady state (4) is not essential; ∂v/∂t may be neglected based only on the low
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Rossby number assumption. The ideal gas approximation (5) is not essential; we could have
used an arbitrary equation of state S(ρ, P ) and we would still obtain (H6) but C−1

P would be
replaced by ρ−1(∂ρ/∂S)|P . Approximation 5 merely allowed us to simplify the right-hand
side a bit and identify ∂ 〈S〉 /∂θ as the most significant thermal gradient involved in thermal
wind balance. Without this approximation, we would have the more general right-hand side
as expressed in equation (H3).

(e) Helioseismic rotational inversions imply that ∂Ω/∂z < 0 in the northern hemisphere of
the solar convection zone and ∂Ω/∂z > 0 in the southern hemisphere. According to (H6),
∂ 〈S〉 /∂θ has the same sign, implying a poleward ∇S. If we attribute this entropy gradient
to a temperature gradient, this implies warm (high entropy) poles. However, the effect is
small and thus difficult to detect, yielding expected thermodynamic variations of about 10−5

relative to the hydrostatic background state. Current helioseismic structure inversions are
not sensitive enough to confirm or deny such small thermal gradients.

PROBLEM 2: DYNAMO WAVES

(a) There’s not much to say here beyond the hints. The “uncurled” version of equation
(H7) is

∂A′

∂t
= v×B + αB (13)

where A
′ is the total vector potential, defined such that ∇×A

′ = B. Note that A is the x
component of A′ and Bx comes from the y and z components:

Bx =
∂A′

z

∂y
−

∂A′

y

∂z
. (14)

We won’t really need to use A′

y and A′

z in what follows; we just need to know that they are
independent of x, because Bx is. Still, we’ll find that it is sometimes useful to write B as
∇×A

′ in order to use vector identities.
Since v is in the x̂ direction, the first term on the right-hand-side of (13) is perpendicular

to the x direction. So, the x component of (13) gives (H10).
To derive (H11), first plug in (H8) for v to find that

v×B = −ΓzBzŷ + ΓzByẑ . (15)

Taking the x component of the curl then gives

[∇× (v×B)] ·x̂ = ΓBz + Γz

{

∂By

∂y
+

∂Bz

∂z

}

= −Γ
∂A

∂y
. (16)

The term in curly brackets is zero because ∇·B = 0. Now note that ∇·(Ax̂) = 0 because
A is independent of x. So, equation (H21) implies

∇× [∇× (Ax̂)] = −∇2 (Ax̂) = −∇2A x̂ . (17)

Plugging (16) and (17) into (H7) yields (H11).
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(b) Neglecting the α term in equation (H11) gives

∂Bx

∂t
= −Γ

∂A

∂y
. (18)

Then differentiating (H10) with respect to time yields

∂2A

∂t2
= α

∂Bx

∂t
= −αΓ

∂A

∂y
, (19)

where we have used (18).

(c) Plugging the expansion (H13) into (H12) and dividing by Ã gives

ω2 = ıαΓk . (20)

Taking the square root gives

ω = ±
√

αΓk

2
(ı+ 1) = ±

√

s|αΓ|k
2

(ı+ 1) . (21)

If s = 1 then
√
s = 1 and if s = −1 then

√
s = ı. With a little thought you can convince

yourself that (H14) satisfies both possibilities.
If you were to double α the wave would go faster in the same direction by a factor of

√
2.

The exponential growth rate would also increase by a factor of
√
2. If you change the sign

of α but not the amplitude, then the wave would go the other direction at the same speed.
The same statements also apply to Γ if you were to keep α constant. In the Solar envelope,
∂Ω/∂r is biggest near the base of the convection zone and tachocline. The predicted sign of
α there (opposite to the sign of kinetic helicity) implies equatorward propagation.

(d) If the α term dominates in (H11) then instead of (H12) you’d get

∂2A

∂t2
= −α2∇2A . (22)

Plugging in the expansion (H13) then gives

ω2 = −α2
(

k2 + k2

z

)

(23)

where kz is the vertical wavenumber, assuming Ã(z) ∝ exp ikzz. Taking the square root
gives

ω = ±ıα
√

k2 + k2
z . (24)

Equation (H13) then implies that there is no oscilltory behavoir for A; it either grows or
decays exponentially, keeping the same spatial profile.

The implication is that shear, or in other words, differential rotation, helps promote
dynamo waves, and thus cyclic activity, by introducing a phase shift between the poloidal
and toroidal source terms. In short, an α-Ω dynamo would be more likely to exhibit a
magnetic cycle than an α2 dynamo. If this simple model is valid for the Sun, it suggests that
differential rotation may have a key role to play in establishing the solar cycle.
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(e) The full magnetic induction equation with diffusion is

∂B

∂t
= ∇× (v×B + αB − η∇×B) (25)

Since ∇·B = 0, equation (H21) implies

∇× (∇×B) = −∇2
B . (26)

Also, since A
′ is independent of x, equation (H21) also yields

[∇× (∇×A
′)] ·x̂ = −∇2A . (27)

Thus, in both equations (H10) and (H11) we can replace the ∂/∂t operator by

∂

∂t
→ ∂

∂t
− η∇2 . (28)

Plugging in the expansion of (H13) and applying this operator twice gives the substitution

[

−ıω2
]

→
[

−ıω + η
(

k2 + k2

z

)]2

(29)

...so
ω2 →

[

ω + ıη
(

k2 + k2

z

)]2

(30)

Plug this into (20) and you’ll find that the dispersion relation (H14) is replaced by

ω = ±
√

|αΓ|k
2

(s+ ı)− ıη
(

k2 + k2

z

)

. (31)

So, essentially, there is an extra term in the dispersion relation for ω that is purely imaginary
and proportional to η.

A look at our expansion in equation (H13) shows that in order to have an exponentially
growing solution, we need the imaginary part of ω to be positive. So, we’ll take the positive
root of (31) and require that

√

|αΓ|k
2

− η
(

k2 + k2

z

)

> 0 . (32)

A little straightforward manipulation of this gives the condition D > 1, where D is defined
by (H17).
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