
	  

Solutions	  to	  Merav	  Opher	  (2010)	  Problems	  

1.	  	  	  The	  normal	  of	  the	  shock	  is	  	  
	  

	  

	  

Since	  from	  the	  plot	  you	  can	  obtain	  all	  the	  three	  components	  of	  Bu	  and	  Bd,	  the	  normal	  
can	  be	  easily	  found.	  The	  shock	  speed	  is:	  

	  

	  

	  

With	  the	  shock	  Theta_Bn	  can	  be	  found.	  Alfven	  mach	  number,	  sonic	  mach	  number	  as	  
well	  as	  the	  compression	  are	  easy	  and	  can	  be	  obtained	  directly	  using	  the	  graphs.	  	  

	  

2.	  Considering a shock coordinate system where the parallel axis || is along the normal of 
the shock, 

! 

ˆ n = cos("1) ˆ R + sin("1)cos(#1) ˆ T + sin("1)sin #1( ) ˆ N , where θ1 and φ1 are the 
angles between the normal n and the radial upstream velocity V1.  θ1 is defined as the 
angle measured between n and R. φ1 is the angle between the projection of n on the (T, 
N) plan and T (see Supplementary figure 1). The perpendicular axis are taken as 

, and .  

The three-dimensional Rankine-Hugoniot conditions in this shock coordinate system 
(after a transformation to the deHoffman -Teller frame) are: 

! 

v2|| =
v1||
r

v2"1 = v1"1

v2"2 = v1"2 +
B1|2
B1||

(r #1)v1||vA1||
2

v1||
2 # rvA1||

2( )

                                                 Eqs. (1-3) 

where the index “1” and “2” refer respectively, to the upstream and downstream 
quantities; VA1 is the upstream Alfven speed. In the RTN frame Eqs. (1-3) 
become: 
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          Eqs.(4-6) 

V2N =
V1 cos(!1)!VS

r
"

#
$

%

&
'sin(!1)sin("1)!

V1 cos(!1)sin(!1)sin("1)
#1
2

! !
V1 cos(!1)sin(!1)cos("1)

#1
+ tan $1( )

(r !1) V1 cos(!1)!VS( ) VA1 cos !1( )( )
2

V1 cos(!1)!VS( )2 ! r VA1 cos !1( )( )
2( )

"

#

$
$
$

%

&

'
'
'

sin2(!1)cos "1( )sin !1( )
!1

!1 = sin2("1)sin
2(#1)+ cos

2("1) , χ1 is the angle between B1 and the shock normal: 
cos(!1) = sin("1)cos(#1)  and r is the compression ratio, r=ρ2/ρ1. 

	  

3.	  The	  Termination	  Shock	  at	  the	  time	  of	  the	  Voyager	  2	  crossing	  had,	  on	  average,	  for	  	  
θ1=15°,	  φ1=165°	  .	  

	  

4.	  The	  students	  should	  sketch	  the	  main	  MHD	  variables	  for	  a	  tangential	  discontinuity	  
(heliopause)	  (so	  total	  pressure	  should	  be	  constant).	  They	  should	  also	  be	  able	  to	  
sketch	  the	  jump	  at	  the	  termination	  shock.	  They	  should	  be	  able	  to	  compare	  Voyager	  1	  
and	  2	  and	  qualitatively	  see	  that	  the	  magnetic	  pressure	  at	  Voyager	  2	  will	  be	  stronger	  
therefore	  the	  heliopause	  will	  be	  closer	  to	  the	  sun	  than	  Voyager	  1.	  	  

Problem Set SOLUTIONS: Heliophysics Textbook II: Chapter 7

Page | 2 of 9



Shocks, Homework

5. a. The hydrodynamic jump conditions for plasma, γ = 5/3, are

M2
2 =

M2
1 + 3

5M2
1 − 1

→ 1

5
(1)

ρ2

ρ1
=
vn,1

vn,2
=

4

1 + 3/M2
1

→ 4 , (2)

where limits are for M1 → ∞. We can use these to write

p2

ρ2
=

v2
2

γM2
2

→ 3 v2
2 → 3

16
v2
1 =

3

16
v2

sw . (3)

This gives the temperature

TB =
mp

2kB

pB

ρB

≃ 3mp

32kB

v2
sw . (4)

A simplified of the day-side magneto-

sphere. Flow streamlines are shown as

solid curves originating at the Sun, far

to the left. The bow shock is a dashed

arc and the magnetopause is a thick solid

arc. The magnetosphere proper is dark

grey, with some white magnetic field lines

shown. The magnetosheath is the lighter

greay region between the bow shock and

the magnetopause.

b. Using eq. (3) gives

1
2
v2

B =
1

6

pB

ρB
, (5)

and thus
pB

ρB
+

2

5
1
2
v2

B =
16

15

pB

ρB
=

pS

ρS
. (6)

From this we find

TS =
16

15
TB =

mp

10kB
v2

sw = 1.2 × 105 K

(

vsw

100 km/s

)2

. (7)

Taking vsw = 800 km/s gives TS = 7.7 × 106 K.

1
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c. It is clear from eq. (2) that
ρB = 4 ρsw . (8)

Adiabatic compression leads to the ratio

ρS

ρB
=

(

TS

TB

)1/(γ−1)

=
(

TS

TB

)3/2

=
(

16

15

)3/2

= 1.102 . (9)

From this we find

ρS ≃
(

16

15

)3/2

4 ρsw = 4.407 ρsw . (10)

d. The flow angle is defined

tan θj =
vt,j

vn,j
(11)

where vt, the flow tangent to the shock, is the same on both sides. This leads to

tan θ2 =
vt

v2

≃ 4
vt

v1

= 4 tan θ1 . (12)

The deflection across the shock is

∆θ = θ2 − θ1 ≃ 4 θ1 − θ1 = 3θ1 , (13)

after using the small angle approximation to replace tan θj ≃ θj.

e. The post-shock velocity vector is

v2 = vn,2n̂ + vt,2t̂ = vn,2 [ n̂ + tan θ2t̂ ] = vn,2 [ n̂ + 4 tan θ1t̂ ] (14)

where n̂ is the shock normal and t̂ a tangent vector perpendicular to it. The square
magnitude is therefore

|v2|2 = v2
n,2 [ 1 + 16 tan2 θ1 ] . (15)

Compared to the local sound speed this is

|v2|2
c2s,2

=
v2

n,2

c2s,2
[ 1 + 16 tan2 θ1 ] = M2

2 [ 1 + 16 tan2 θ1 ] =
1

5
[ 1 + 16 tan2 θ1 ] ,

using the hypersonic limit from eq. (1). Setting this to exceed one gives the require-
ment

tan θ1 > 1
2

, θ1 > tan−1(1/2) = 26.5◦ . (16)

f. The radial and poloidal velocities are

vr =
1

r2 sin θ

∂ψ

∂θ
= 2

A

R2
mp

(

r2

R2
mp

− R3
mp

r3

)

cos θ , (17)

vθ = − 1

r sin θ

∂ψ

∂r
= − A

R2
mp

(

4
r2

R2
mp

+
R3

mp

r3

)

sin θ , (18)

2
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so evidently A is negative. The angle of the downstream flow relative to the shock
normal, n̂ = r̂, at r = Rbs, just inside the bow shock, is

tan θ2 = − vθ

vr
=

4(Rbs/Rmp)
3 + (Rmp/Rbs)

2

2(Rbs/Rmp)3 − 2(Rmp/Rbs)2
tan θ . (19)

According to part d. this must be tan θ2 = 4 tan θ1, and θ1 = θ, to polar angle, since
the flow is horizontal outside the shock. This leads to the relation

4(Rbs/Rmp)
5 + 1

2(Rbs/Rmp)5 − 2
= 4 , (20)

and therefore

Rbs =
(

9

4

)1/5

Rmp = 1.18Rmp . (21)

This result is often cast in terms of the “stand-off” distance between the bow shock and
magnetopause:

∆ = Rbs −Rmp = 0.18Rmp , Msw → ∞ . (22)

The simple model proposed above, a super-sonic flow encountering a spherical obstacle
of radius R, is one for which there has been much study. Laboratory experiments with
different Mach numbers and different fluids (i.e. differing γ) have led to empirical relations
of the form

∆

R
≃ α

ρ1

ρ2
, (23)

with values α ≃ 0.78 (Seiff, NASA Tech. Pub. 24, [1962]). Numerical solutions of fully
compressible hydrodynamics yield α ≃ 1.1 (Spreiter, Summers & Alkse, Planet. Space

Sci. 14 223 [1966]), which has been subsequently used to predict the stand-off distance
of the actual bow shock, at least for cases with high solar wind Mach number (see Farris
& Russell, JGR 99, 17681 [1994]). The simplified calculation we have performed here
has found a lower value, α = 0.18 × 4 = 0.704, due mostly to the departure of actual
post-shock flow from the incompressible solution we assumed. It is not, however, due
to our assumption of a spherical magnetopause. As shown in part e., the sheath flow
becomes supersonic beyond an angle of θ = 26◦. Inside this small region there is little
difference between a sphere and the actual magnetopuase. Differences outside that region
can affect neither the subsonic solution nor the stand-off distance.

3
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6. a. The velocity difference is equal to vf , and at high Mach number this difference is

vf = v1 − v2 =
(

1 − v2

v1

)

v1 ≃ 3
4
v1 . (24)

Since the pre-shock material is at rest relative to the Sun, the shock moves downward
at speed v1

vs = v1 = 4
3
vf . (25)

b. The post-shock velocity, in the shock frame, is

v2 = 1
4
v1 = 1

3
vf . (26)

Using the fact that v2/cs,2 = M2 = 1/
√

5 we find that

1√
5

= 1
3

vf

cs,f
=⇒ cs,f =

√
5

3
vf (27)

The downward flows is therefore related to the post-shock temperature

Tf =
3

5

m̄

kB
c2s,2 =

1

3

m̄

kB
v2

f = 2 × 107 K

(

vf

100 km/s

)2

. (28)

c. After reflection there is a new shock propagating upward into the flare plasma. The
velocity difference is the same, v1 − v2 = vf , but the pre-shock plasma of this shock
is the post-shock plasma from the incident shock: the flaring plasma. This is not,
however, a high Mach-number shock so

vf = v1 − v2 =
(

1 − v2

v1

)

v1 =

(

1 − 2M2
1 + 6

8M2
1

)

v1

= cs,f M1

(

3
4
− 3

4
M−2

1

)

= 3
4
cs,f (M1 −M−1

1 ) . (29)

The results of the previous section therefore lead to the condition

3
4
(M1 −M−1

1 ) =
vf

cs,f
=

3√
5
. (30)

This is a quadratic equations whose positive solution is M1 =
√

5. This is the Mach
number of the reflected shock.

d. The reflected shock enhances the pressure by

p2

p1

=
5M2

1 − 1

4
= 6 , (31)

above the pressure following the first, hypersonic, shock. This pressure is

p̃2 = 3
4
ρ̃1ṽ

2
1 = 4

3
ρ0 v

2
f , (32)

where ρ0 is the pre-flare coronal density. The the final chromospheric pressure is

pchr. = 6 × 4
3
ρc v

2
f = 8 ρ0 v

2
f . (33)

4
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e. The transmitted shock raises the pressure by

p2

p1
=

8 ρ0 v
2
f

p0
≃ 5

4
M2

1 , (34)

where p0 and ρ0 are pre-flare coronal values; the pre-flare chromosphere is at the same
pressure as the pre-flare corona since they are separated by a contact discontinuity.
Using the fact that p0/ρ0 = (3/5)c2s,0 this becomes

40v2
f

3c2s,0
= 5

4
M2

1 , (35)

from which we see that M1 =
√

32/3(vf/cs,0). It does not depend on r.

f. Since the pre-flare chromosphere is colder than the pre-flare corona by 1/r, its sound
speed is cs,0/

√
r. This is the sound speed by which the pre-shock speed, v1, is divided

to form M1. The velocity difference is then

v1 − v2

cs,0/
√
r

=
3

4

v1

cs,0/
√
r

= 3
4
M1 =

√
6
vf

cs,0
. (36)

This shows that the velocity jump across the transmitted shock is

v1 − v2 =

√

6

r
vf . (37)

Since the pre-shock material is at rest this is the downward velocity of the transmitted

shock. In order to neglect this velocity in the reflected shock we need
√

6/r ≪ 1.

5
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17:25UT (first) 17:49UT (second)
n [cm−3] 11.62 4.25

vR [km/s] 349.5 295.9
vT [km/s] 64.80 79.14
vN [km/s] 37.98 59.75

BR [nT] 0.027 1.000
BT [nT] -1.759 -0.908
BN [nT] -2.931 -1.474

7. a. A shock always compresses the plasma so the post-shock region will have the higher
density — the second observation is pre-shock. This is the second region to pass
the spacecraft, and therefore lies at smaller radius than the post-shock region. The
shock normal n̂ must point toward the pre-shock region so n̂ · r̂ < 0. This is therefore
a reverse shock.

b. Taking the dot product with n̂ shows

n̂ · [[B]] = [[n̂ ·B]] = [[Bn]] = 0 , (38)

from the jump condition following from ∇·B = 0. This shows that [[B]] is orthogonal
to n̂.

c. The jump in velocity is

[[v]] = n̂[[vn]] + [[v⊥]] = n̂[[vn]] +
Bn

4πρvn

[[B⊥]] = n̂[[vn]] +
Bn

4πρvn

[[B]] . (39)

In the special case that [[vn]] = 0, the two jumps [[v]] and [[B]], lie along the same line
(they are parallel or anti-parallel). This condition is equivalent to [[ρ]] = 0, which is a
rotational discontinuity. This does no apply here since np1 6= np2. Thus the velocity
jump is a sum of two perpendicular components and lies in the plane spanned by
them: [[B]] and n̂.

d. First we compute the differences directly

∆B = (−0.97,−0.85,−1.46)µG , ∆v = (53.57,−14.34,−21.77) km/s

whose magnitudes are

|∆B| = 1.95µG , |∆v| = 59.58 km/s

We can extract from ∆v that component perpendicular to ∆B

w = ∆v − ∆v · ∆B

|∆B|2 ∆B

= ∆v − −8.21

3.79
∆B = (51.47,−16.18,−24.92) km/s (40)

The normal vector n̂ must have unit magnitude and a negative radial component

n̂ = − w

|w| = (−0.866, 0.272, 0.419)

6

Problem Set SOLUTIONS: Heliophysics Textbook II: Chapter 7

Page | 8 of 9



e. The dot product of the normal vector with the magnetic fields gives the angles

cos θ1 =
B1 · n̂
|B1|

=
−1.73

2.00
= − 0.866 , θ1 = 150.000◦

cos θ2 =
B2 · n̂
|B2|

=
−1.73

3.42
= − 0.507 , θ2 = 120.438◦

f. From the expressions we find

M2
A2 =

n1

n2
M2

A1

and

(M2
A1 − 1) tan θ1 = (M2

A2 − 1) tan θ2 =
(

n1

n2
M2

A1 − 1
)

tan θ2

Solving this gives

MA1 =

√

tan θ1 − tan θ2
tan θ1 − (n1/n2) tan θ2

MA1 = 5.000 , MA2 = 3.024

g. We have several pieces of evidence that this is a fast shock. We could have noted
early on that |B2| > |B1|. Later it was evident that B2 had deflected away from
the shock normal (although it appears that θ2 < θ1 because the field is directed
backwards). Finally, we wee that the Mach numbers are ordered

1 < MA2 < MA1 , (41)

which is a prerequisite for the fast shock.

h. The Alfvén Mach number refers to the normal component of the upstream velocity
v1,n in the reference frame of the shock. If we denote the shock speed vs the inflow
speed is therefore

v′n,1 = vn,1 − vs = −MA1 vA1,n , (42)

since the inflow is always in the direction opposite n̂. The shock speed is therefore

vs = vn,1 + MA1 vA1,n , (43)

where v1,n is the component of the velocity, in the spacecrtaft frame,

vn,1 = n̂ · v1 = − 2.10 × 107 cm/s = − 210 km/s .

The normal component of the Alfvén velocity is

vAn,1 =
|B1 · n̂|√
4πn1mp

=
1.73 × 10−5G

9.44 × 10−12
= 1.83 × 106 cm/s = 18.3 km/s .

This gives the shock velocity in the reference frame of the spacecraft

vs = (−210 + 5.00 × 18.3 ) km/s = − 118 km/s , (44)

The shock propagates in the direction of the shock normal giving

vs = n̂ vs = (103, −32.2, −49.7) km/s . (45)

The shock is therefore moving outward from the Sun, even though it is a reverse

shock.

7
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