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In many of the problems encountered in the heliospheric transport of energetic particles, 
particles are scattered effectively in pitch-angle during timescales of interest. The 
scattering is due to the irregular electromagnetic fluctuations in the plasma that have a 
secular effect on the particle velocity. Under these circumstances the particle distribution 
functions can be assumed to be nearly isotropic, and the appropriate transport equation is 
the energetic particle transport equation first derived by Parker (Planet. Space Sci., 13, 9, 
1965). Applications of this transport equation have had a huge impact on this area of 
research from the solar modulation of galactic cosmic rays, to the transport of solar 
energetic particles and the mechanism of diffusive shock acceleration. It is therefore 
essential for a student of energetic particle transport to gain familiarity with the equation, 
the physics behind it, and illustrative applications of the equation to many of the 
important energetic particle populations in the heliosphere. The problems that follow are 
rather diverse and only ordered by their difficulty with the easiest problems presented 
first. 
 
1. Particle Conservation 
 
Consider the Parker transport equation 
 

 

 
with no source of particles on the right hand side, where the drift velocity 
 

 

 
Show explicitly that the total number of particles in phase-space is conserved as long as 

 and  vanish. It is helpful to write the equation in conservation 
(continuity) form. 
 
 
2. Interplanetary Propagation of Solar Energetic Particles (SEPs) 
 
High-energy particles are accelerated close to the Sun in association with flares and 
coronal mass ejections (CMEs). They occur either as discrete impulsive events or gradual 
events. The former events are thought to be accelerated as a byproduct of magnetic 
reconnection at the flare site, while the latter events are thought to be accelerated at the 
shocks driven by fast CMEs near the Sun. In both cases these particles propagate into 
interplanetary space after their release at the Sun. The particles that arrive first at an 
observing spacecraft propagate nearly scatter-free through the ambient electromagnetic 
fields. However, those that arrive later have been scattered by electromagnetic 
fluctuations, have nearly isotropic velocity distributions, and may be described very 
approximately by the Parker transport equation. 
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The simplest possible model neglects particle drift, advection with the solar wind and 
adiabatic deceleration in the diverging wind. If N particles of a specific momentum 
magnitude  are released impulsively at the Sun with spherical symmetry, they then 
satisfy 

 

 
where we have assumed that the diffusion tensor is isotropic and homogeneous. Find 

. For an observer at heliocentric radius r, at what time is the maximum particle 
intensity observed? 
 
 
3. The Solar Modulation of Galactic Cosmic Rays 
 
Consider a simple model for the solar modulation of galactic cosmic rays, which 
nevertheless includes many of the important features of the process. Take the stationary 
spherically-symmetric Parker transport equation for constant solar wind speed V and 

 (independent of energy) 
 

 

 
where drift transport is neglected. Find 

! 

f (r < r0, p)   subject to the boundary condition 

! 

f (r0, p) = p0"( p # p0) . The solution represents the modulation of a monoenergetic 
population of galactic cosmic rays. A more general energy spectrum of cosmic rays in 
interstellar space may be obtained by convolution. Hint: a more convenient choice of 
independent variables is 

! 

x = ln(r r0)  and 

! 

y = ln( p p0) . Describe the essential features of 
the solution. Find 

! 

pm , the momentum at which f has its maximum value, as a function of 
r. 
 
 
4. A Simple Model for the Production and Evolution of Interstellar Pickup Ions in 
the Solar Wind 
 
Interstellar gas enters the heliosphere under the influence of solar gravity, radiation 
pressure, and ionization losses. The resulting neutral atom density is 

! 

n(r," )  , where r is 
heliocentric radial distance and  is the angle of the heliocentric position vector relative 
to the bulk inflow velocity of the atoms. We may assume that the ionization rate per atom 
is 

! 

"0(r0 r)2.  When an atom is ionized it has a speed approximately equal to the solar 
wind speed V in the frame of the solar wind. We assume that these ions are immediately 
picked up by the solar wind via gyration and pitch-angle scattering to form an isotropic 
shell of speed V in the solar wind frame. 

(a) Assuming	  that	  the	  pitch-‐angle	  scattering	  rate	  is	  so	  large	  that	  the	  spatial	  
diffusion	  tensor	  is	  negligible,	  write	  down	  the	  Parker	  equation	  for	  the	  
evolution	  of	  the	  pickup	  ion	  omnidirectional	  distribution	  function	  
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with	  an	  appropriate	  source	  term.	  We	  assume	  that	  the	  configuration	  is	  
stationary	  and	  that	  the	  solar	  wind	  has	  constant	  speed	  and	  spherical	  
symmetry.	  

(b) Solve	  the	  Parker	  equation	  for	  

! 

f (r," ,v) .	  
(c) Approximate	  

! 

f (r," ,v) 	  for	  large	  r.	  

Draw a schematic plot of 

! 

f (r," ,v)  versus v. 
 
 
5. Diffusive Acceleration at a Planar Stationary Shock 
 
Consider particle acceleration and transport at a planar stationary shock at x = 0, for 
which the Parker transport equation in the shock frame is 

      (1) 
The upstream fluid flow is 

! 

Vx(x < 0) =Vu > 0   and the downstream fluid flow is 

! 

Vx(x > 0) =Vd > 0 , where both 

! 

Vu   and 

! 

Vd  are constants. The diffusion coefficients are 

! 

K(x < 0) = Ku and 

! 

K(x > 0) = Kd , where 

! 

Ku and 

! 

Kd   are functions only of p. The 
boundary conditions are that  is finite and , where  
represents the ambient population of energetic particles. The objective of this problem is 
to calculate . 

(a) Solve	  equation	  (1)	  separately	  upstream	  (x	  <	  0)	  and	  downstream	  (x	  >	  0)	  of	  the	  
shock.	  Each	  solution	  should	  involve	  two	  undetermined	  functions	  of	  p.	  	  

(b) Impose	  the	  boundary	  conditions	  at	   	  and	   .	  
(c) Impose	  the	  condition	   	  at	  the	  shock	  as	   .	  Why	  is	  this	  

condition	  appropriate?	  
(d) The	  final	  undetermined	  function	  of	  p	  is	  determined	  by	  integrating	  equation	  

(1)	  from	  	   	  to	   	  and	  allowing	   	  to	  approach	  zero.	  This	  “jump	  
condition”	  yields	  a	  first-‐order	  differential	  equation	  for	  the	  remaining	  
unknown	  function.	  What	  is	  the	  physical	  meaning	  of	  this	  jump	  condition?	  
Solve	  the	  differential	  equation	  to	  determine	  the	  function.	  

(e) Write	  out	   	  and	   	  explicitly.	  
(f) Evaluate	   	  for	  the	  specific	  case	   .	  

In this case write the power-law index in terms of the shock compression ratio 
, where  is the fluid mass density. 

 
 
6. A Simple Example of a Shock Modified by Energetic Particle Pressure 
 
Consider a fluid with mass density , velocity V, and negligible pressure. It transports 
nonrelativistic energetic particles, which are coupled to it by a constant diffusion 
coefficient K. The relevant equations are the hydrodynamic equations for the fluid and 
the Parker equation for the energetic particles (ignoring the magnetic field): 
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,        (1) 

,       (2) 

,     (3) 

 
where P is the energetic particle pressure  

(a) Take	  the	  pressure	  moment	  of	   equation	  (3)	  to	  
derive	  an	  equation	  for	  

! 

P(x, t) .	  You	  should	  get	  a	  factor	  5/3;	  set	  γ	  =	  5/3.	  
(b) Now	  consider	  a	  stationary	  planar	  system	  with	  variations	  in	  the	  x-‐

direction	  only.	  Rewrite	  equations	  (1)	  and	  (2),	  and	  the	  equation	  for	   	  
derived	  in	  (a)	  specifically	  for	  this	  system.	  

(c) Find	  three	  integrals	  of	  the	  system	  and	  identify	  them	  as	  mass	  flux,	  
momentum	  flux	  and	  energy	  flux	  conservation.	  Identifying	  the	  integral	  
associated	  with	  the	  P	  equation	  is	  somewhat	  tricky.	  Rewrite	  the	  factor	  

	  appearing	  in	  one	  term	  as	  

! 

d dx (PV ) "VdP dx .	  Then	  in	  the	  terms	  
involving	  the	  derivative	   	  use	  the	  simplified	  version	  of	  equation	  (2)	  
to	  replace	   	  by	  the	  term	  in	  equation	  (2)	  involving	  V	  and	  dV/dx.	  The	  
resulting	  equation	  may	  be	  integrated	  easily.	  

(d) Determine	  the	  three	  constants	  by	  setting	  

! 

V =V 0 > 0	  ,	  	  

! 

" = "0	  and	   	  as	  
.	  

(e) Derive	  the	  following	  equation	  for	  

! 

V (x) 	  alone	  by	  eliminating	  P	  in	  the	  
energy	  flux	  integral:	  

 
7. Stochastic Acceleration of Particles in a Homogeneous Plasma 
 
Stochastic acceleration of particles is a classical acceleration mechanism. The original 
version of the mechanism, second-order Fermi acceleration, was developed by Fermi to 
account for the acceleration of galactic cosmic rays by “collisions” with interstellar 
“clouds.” Although the original application of the mechanism is no longer viable, 
subsequent versions describe the acceleration of particles by a spectrum of Alfvén waves, 
by a spectrum of magnetosonic waves, by stochastic compressions and expansions in a 
plasma, and by multiple shock waves. The basic mechanism may be understood by 
considering the elastic scattering of particles off a homogeneous isotropic ensemble of 
massive spheres with random velocities V, radius R, and density N.  The appropriate 
transport equation is 
 

 

 
where f is the omnidirectional distribution function, p is momentum magnitude,

, v is particle speed, and  is the scattering mean 
free path. Calculate  if  and the particles are 
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nonrelativistic. It is helpful to choose variables  and , an appropriate 
dimensionless time. Find limiting forms for  for (a)  and P arbitrary and 
(b)  and P finite. 
 
8. Particle Scattering by a Magnetic Irregularity 
 
Consider the motion of a proton in a magnetic field given by 
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where F = F(z) and G = G(z). 
(a) Give	  the	  equations	  for	   	  and	   	  describing	  the	  magnetic	  field	  lines.	  
(b) Write	  down	  the	  three	  components	  of	  the	  equation	  of	  motion,	  

,	  involving	   ,	   	  and	   .	  
(c) Show	  explicitly	  that	  the	  proton	  speed	  v	  is	  a	  constant.	  
(d) Integrate	  and	  manipulate	  the	  equations	  for	   	  and	   	  to	  show	  that	  

if	   	  and	   ,	  where	   	  and	   	  are	  all	  constants,	  a	  
proton	  that	  traverses	  the	  configuration	  from	   	  to	   encircles	  the	  
same	  field	  line	  at	  	   	  as	  it	  encircled	  at	   .	  

	  This	  means	  that	  in	  this	  configuration	  the	  particle	  precisely	  follows	  the	  field	  line.	  
(e) Now	  take	  
	  

	  
	  

	  
	  

where	   .	  Sketch	  a	  field	  line	  as	  carefully	  as	  you	  can.	  
(f) To	  zeroth	  order	  in	  ε,	  the	  proton	  trajectory	  satisfies 	  and	  

,	  where	   .	  Integrate	  
the	  equation	  for	   	  to	  calculate	  to	  order	  ε	  the	  change	  in	  vz,	   ,	  as	  the	  
proton	  moves	  from	   	  to	   .	  You	  may	  wish	  to	  integrate	  by	  parts.	  

Interpret your answer. Do you see evidence for the cyclotron resonance condition? What 
determines the sign of  ? 
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