
Cosmic-Ray Problem Solutions.
J. R. Jokipii

1. In this case, the transport equation becomes
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Clearly, the momentum spectrum remains the same power law in momen-
tum with index γ.

The equation is homogeneous in radius r, so the solution is a power law
in radius. Setting f = Arαp−γ , the equation becomes

κ0 [α(α+ 2)]− Vwα−
2Vwγ

3
= 0
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α2 +
(
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)
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This is a quadratic equation for α. The general solution is
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+
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.

Clearly, we must choose the minus sign in front of the square root, which
then yields the solution

f(r, p) = Ar−αp−γ ,

with

α =
Vw
κ0
− 1−

√(
Vw
κ0
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)2

+
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.

2. Write the Parker spiral magnetic field as:

B = B0

(r0
r

)2
[
er −

rΩ�sin(θ)
Vw

eφ

] [
1−H(θ − π

2
)
]
,

where H is the Heaviside step function, and we define Γ = rΩ�sin(θ)/Vw).
The drift velocity, averaged over a nearly isotropic angular distribution at
a given momentum p is:

Vd =
pcw

3q
∇×

[
B
B2

]
.
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The curl of a vector A in spherical coordinates is

∇×A =
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from which we readily obtain the answer

Vd =
2wpcr

3B0r2cq(1 + Γ2)2

[
− Γ
tan(θ)

er + (2 + Γ2)eθ +
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tan(θ)
eφ
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[
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]
3. Again we begin with the Parker transport equation. For a steady, spheri-

cally symmetric heliosphere with a boundary at radius r1, neglecting the
termination shock, we must solve
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∂t
= 0 =
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subject to f → Ap−γ as r → r1. To lowest order in the parameter η, we
may write

f(r, p) = f∞(p) [1 + f1(r, p) + f2(r, p)... ]

where f1(r, p) is of first order in η, etc.

Putting this into the transport equation and keeping only the first-order
terms, we have

f∞(p)
r2

[
∂
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]
= − 1

3r2

(
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∂r

)
p
∂f∞
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.

This may be manipulated to yield

∂
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)
p
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which, in turn, yields

∂f1(r, p)
∂r

= − V w

3κrr
∂ln(f∞)
∂ln(p)

,

or, finally,

f(r, p) = f∞(p)
[
1− 1

3
∂ln(f∞)
∂ln(p)

∫ r1

r

Vw(r′)
κrr(r′, p′)

dr′
]
.

4. We consider the one-dimensional version of Parker’s transport equation
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=

∂
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∂x

]
− V ∂f
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.
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working in the frame at rest with respect to the shock, the velocity as a
function of x may be written V (x) = [(V1 + V2)− (V 1 + V 2)H(x)], where
H(x) is the Heaviside step function, where V1, V2 are the upstream and
downstream flow speeds, respectively. The solutions for f upstream and
downstream are then

f1(x, p) = A1(p) +B1(p)eV1x/κ x < 0
f2(x, p) = A2(p) +B2(p)eV2x/κ x > 0

To avoid ∞ at large positive x, we must set B2(p) = 0. To fit the far up-
stream boundary condition, we set A1(p) = αp−γ . To match the solutions
at x = 0, we set A1(p) +B1(p) = A2(p).

Finally, we integrate the transport equation from just downstream to just
upstream (−ε to+ ε) to obtain

−B1(p)V1 +
(V2 − V1)

3
p
∂A2

∂p
= 0.

So, we may eliminate B1 and A1 to obtain an equation for A2(p). If we
set η = ln(p),

∂A2(p)
∂η

+
3V1

V1 − V2
A2(p) = −α 3V1

V1 − V2
e−γη

which may be rewritten as

∂

∂η
e

3V1
V1−V2

ηA2(p) = e(−γ+
3V1

V1−V2
)η.

Since, for any constant a eaη = pa, if we define q = 3V1/(V1 − V2), this
may be readily integrated to yield the solution

A2(p) = f(x = 0, p) = a1p
−q +

αq

α+ q
p−γ

If there is no source of low-energy particles at the shock a1 = 0 . If we
had particles injected and accelerated at the shock, a1 would be non-zero.

5. We proceed as in problem 4. But now there is an antisymmetric term to
the diffusion tensor εijkκABk/B2 (note, this is in standard index notation
and εijk is the totally asymmetric Levi-Civita epsilon - interchanging any
of the indices changes the sign). The divergence of this term gives the
standard drift velocity

Vd =
pcw

3q
∇× B

B2

Evaluating this at the shock yields a delta function singularity.

Vd = ey
pcw

3q

(
Bz1
B2

1

− Bz2
B2

2

)
δ(x− xshock

The general solutions upstream and downstream are more complicated
because of the y-dependence. However, we may obtain a jump condition
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which contains the effect of the discontinuity at the shock again, by inte-
grating from just downstream to just upstream. Since the magnetic field
B also changes, we obtain the jump condition[

κxx
∂f

∂x
+
Vx
3
p
∂f

∂p
− pcw

3q
Bx
B2

∂f

∂y

]2
1

where the bracketed terms downstream of the shock are to be subtracted
from the ones upstream. The term involving the change in magnetic field
contains the effect of drifts at the shock.

6. We proceed as in the linear case, but for spherical geometry and consider
the regions upstream and downstream of the shock differently. They are
later connected by a jump condition. We set κrr = κ0r (note that κ0 has
the dimensions of a velocity).

Upstream, we have the same equation as in problem (1).

∂f

∂t
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[
r3
∂f

∂r

]
− Vw
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The solution is again proportional to rαpγ , where the value of α is different
for the two regions, inside and outside of the termination shock. Upon
substituting rαpγ into the transport equation, we find that (defining η =
Vw/κ0,

α1 = η r > Rsh

α2 =
η

2
− 1±

√
η

2

2
− 2

3
ηγ r < Rsh. (1)

Now consider the two parts separately.

a. Since the only effect of the termination shock is to change the speed
of the outward flow and the value of α, we must simply match the two
solutions at the shock. We obtain

f = A

(
r

Rb

)η
r > Rsh

f = A

(
Rsh
Rb

)η (
r

Rsh

)α2

R < Rsh. (2)

Now consider part 2. of the problem where particles are accelerated at
the termination shock.

The solution is again given in terms of power laws in radius, and the power
laws are again α1 and α2. In addition, a constant is a solution. With the
solution going to zero at small radii and at the boundary Rb, and matching
the solution at the shock, we may write

f = A

[
1−

(
r

Rb

)η]
r > Rsh
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Figure 1: Plots of the solutions to problem 6, where GCR corresponds to the
solution to part a., and ACR corresponds to the solution to part b.

f = A

[
1−

(
Rsh
Rb

)η](
r

Rsh

)α2

r < Rsh

In this case γ is is to be determined by the jump condition at the shock.

We again apply the jump condition again by integrating from just in-
side of the termination shock to just outside. The jump condition which
determines γ is

Vw
κ0
− α+

(V2 − Vw)
3κ0

γ = 0

or
γ =

3κ0α

V2 − Vw
− Vw −

Vw
V2 − Vw

The general nature of the solution is given in figure 1.

7. We consider each part separately.

(a) Qualitatively, we can say that for A > 0, the cosmic-ray ions drift
into the inner heliosphere from both heliospheric poles. In this case,
the increasing warp away from sunspot minimum has little effect.
The intensity will decrease only gradually until far from minimum,
increased solar activity will decrease the intensity dramatically.
On the other hand, for A < 0, the cosmic-ray ions tend to come into
the inner heliosphere along the current sheet. Hence, as its warp
increases away from sunspot minimum, there will be an immediate
effect on the cosmic-ray intensity.
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(b) For an extended period of low solar activity, as at the Maunder mini-
mum, one would expec that the drift motions would dominate. Hence
one expects smaller modulation. But there will still be some, and this
modulation would be different for the two signs of the solar magnetic
field. This would quite naturally produce an enhanced 22-year vari-
ation, which could even dominate the effects of solar activity at the
weak solar maximum.
The observations are qualitatively in agreement with this expecta-
tion, suggesting that the picture captures a significant part of reality.
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